CRUISE REPORT: A16N_2003A

(Updated 2005.MAR.15)

HIGHLIGHTS

Cruise Summary Information

WOCE section designation	A16N_2003A				
Expedition designation	33RO200306_01				
(ExpoCodes)	33RO200306_02				
Chief Scientist	John Bullister / PMEL				
Co-Chief Scientist	Nicolas Gruber / UCLA				
Dates	2003 JUN 04 – 2003 AUG 11				
Ship	R/V RONALD H. BROWN				
Ports of call	Reykjavik, Iceland to Natal, Brazil				
Station geographic boundaries	63° 17.58' N				
	29° 00.00' W 19° 59.99' W				
	6° 0.64' S				
Stations	150				
Floats and drifters deployed	no info.				
Moorings deployed or recovered	no info.				
Contributing Authors	E. Peltola, R. Wanninkhof, R. Feely, R. Castle, D. Greeley,				
	JZ. Zhang, F. Millero, N.Gruber, J. Bullister, T. Graham				
CI	Chief Scientists' Contact Information				
John L. Bullister (NOAA-PMEL) • 7600 Sand Point Way N.E. • Seattle, WA 98115 • USA					
Tel: 206-526-6741 • e-mail: John.L.Bullister@noaa.gov					
Nicolas Gruber (UCLA) • ngruber@igpp.ucla.edu					

Cruise and Data Information

Links to text locations. Shaded items are not relevant to this cruise or were not available when this report was compiled

Cruise Summary Information	Hydrograph	Hydrographic Measurements				
Description of Scientific Program	CTD Data:	CTD Data: Acquisition & Processing				
Geographic Boundaries		Calibration				
Cruise Track (Figure): PI CCHDO-V	VHPO Salinity	Pre-Cruise	Post-Cruise			
Description of Stations	Temperat	ure Pre-Cruise	Post-Cruise			
Description of Parameters Sampled	Pressure	Pre-Cruise	Post-Cruise			
Bottle Depth Distributions (Figure)	Oxygen	Pre-Cruise	Post-Cruise			
	Bottle Data					
Floats and Drifters Deployed	Salinity					
Moorings Deployed or Recovered	Oxygen					
	Nutrients	Nutrients				
Principal Investigators for All Measureme	nts CFCs	CFCs				
Cruise Participants	CO ₂ Syste	CO ₂ System Parameters				
	Helium Tr	itium				
Problems and Goals Not Achieved	Radiocarb	Radiocarbon				
Other Incidents of Note	Other Par	Other Parameters				
Underway Data Information	DQE Repor	ts				
Navigation Bathymetry	CTD					
Acoustic Doppler Current Profiler (ADCP)) S/O2/Nutri	ents				
Thermosalinograph & Related Measurem	ients Cfcs					
XBT and/or XCTD	14C					
Meteorological Observations						
Atmospheric Chemistry Data						
· · · · ·						
Acknowledgments Reference	s Data Proce	ssing Notes				

CO₂ STUDIES ON A REPEAT HYDROGRAPHY CRUISE IN THE ATLANTIC OCEAN: CO₂ CLIVAR SECTION A16N_2003A DURING JUNE-AUGUST, 2003

E. Peltola, R. Wanninkhof, R. Feely, R. Castle, D. Greeley, J.-Z. Zhang, F. Millero, N.Gruber, J. Bullister and T. Graham

Atlantic Oceanographic and Meteorological Laboratory Miami, Florida October 2004

NOTICE

Mention of a commercial company, or product does not constitute an endorsement by NOAA/AOML. Use of information from this publication concerning proprietary products or the tests of such products for publicity or advertising purposes is not authorized.

ELECTRONIC ACCESS TO DATA LISTED IN THIS REPORT

The data presented in this report is available on the World Wide Web (WWW) at the following site: http://whpo.ucsd.edu/data/co2clivar/atlantic/a16/a16n_2003a/index.htm

For further information regarding the data sets contact:

WOCE Hydrographic Program Office UCSD/SIO 9500 Gilman Drive 0214 La Jolla, CA 92093-0214

Telephone: 858-822-1770 Fax: 858-534-7383 Email: whpo@ucsd.edu (This email address will reach the WHPO Director and all senior WHPO staff)

Station Locations for A16N_2003a • Bullister • R/V BROWN

Produced from .sum file by CCHDO-WHPO

BOTTLE DATA REPORT CONTENTS

ABSTRACT INTRODUCTION

DATA COLLECTION AND ANALYTICAL METHODS TOTAL DISSOLVED INORGANIC CARBON (DIC) FUGACITY OF CO2 (fCO2) TOTAL ALKALINITY (TA) pH NUTRIENTS OXYGEN ACKNOWLEDGMENTS REFERENCES

FIGURES

- 1 Cruise track for the Atlantic Ocean A16N_2003a cruise in June-August 2003
- 2 DIC duplicates
- 3 Change in water vapor concentration (in millivolts) when a set of 6 (dry) standards are run showing that some residual water vapor remains in the lines after water samples are equilibrated which show an H2O response of about 2200 mV
- 4 Comparison of fCO2 (20) profiles for a crossover locations between a cruise in 1998 and the A16N_203a cruise
- 5 Comparison of deep-water fCO2 values for a cruise in 1993 and the A16N_2003a cruise at a depth range of 4000 to 5000m
- 6 Comparison of underway fCO2 measurements (line) with the discrete samples normalized to the same temperature as the underway measurements using an empirical relationship of 4.23 % °C⁻¹ (diamonds) and the constants of Mehrbach (open squares)
- 7 Difference in underway fCO2 measurements and with the discrete samples normalized to the same temperature as the underway measurements using an empirical relationship of 4.23 % °C⁻¹ (open squares) and the constants of Mehrbach (solid squares)
- 8 Shipboard standardization of thiosulfate solution during 2003 A16N cruise: slopes in the upper panel and intercepts in the lower

TABLES

- 1 Principal Investigators
- 2 Personnel on the cruise
- 3 Participating Institutions
- 4 Dissolved Inorganic Carbon Duplicates Statistics
- 5 Dissolved Inorganic Carbon (DIC) Duplicates
- 6 Comparison of results of different water vapor correction routines
- 7 Analysis statistics for fCO2(20)
- 8 Table of pCO2 duplicate values
- 9 Total Alkalinity (TA) Certified Reference Material Measurements
- 10 Replicate analyses of dissolved oxygen concentration from the test CTD cast
- 11 Replicate analyses of dissolved oxygen concentration (micromole/L) by Winkler titration from same Niskin bottle or different bottles at same depth
- 12 After cruise recalibration of the volumes (cm3) of the O2 bottles
- 13 Shipboard standardization of thiosulfate solution during 2003 A16N cruise
- 14 Post cruise comparison of volume delivery of a manual and automatic pipettes by standardization of KIO3 solution with same batch Na2S2O3 solution

APPENDICES

WOCE quality control flags

CO₂ STUDIES ON A REPEAT HYDROGRAPHY CRUISE IN THE ATLANTIC OCEAN: CO₂ CLIVAR SECTION A16N_2003A DURING JUNE-AUGUST, 2003

E. Peltola, R. Wanninkhof, R. Feely, R. Castle, D. Greeley, J.-Z. Zhang, F. Millero, N.Gruber, J. Bullister and T. Graham

ABSTRACT

This report presents methods, analytical and quality control procedures performed during A16N cruise, which took place from June 4 to August 11, 2003 aboard the NOAA Ship RONALD H. BROWN under auspices of the National Oceanic and Atmospheric Administration (NOAA). The first hydrographic leg (June 19-July 10) was from Reykjavik to Funchal, Madeira along the 20° W meridian and the second leg (July 15-August 11) continued operations from Funchal to Natal, Brazil on a track southward and ending at 6° S, 25° W. The research was the first in a decadal series of repeat hydrography sections jointly funded by NOAA-OGP and NSF-OCE as part of the CLIVAR/CO₂/hydrography/tracer program. Samples were taken from up to 34 depths at 150 stations.

The data presented in this report includes the analyses of water samples for: dissolved inorganic carbon (DIC), fugacity of CO_2 (f CO_2), Total Alkalinity (TA), pH, nitrate (NO₃), nitrite (NO₂), phosphate (PO₄), silicate (SiO₄) and dissolved oxygen (O₂).

INTRODUCTION

The A16N-2003A cruise from Reykjavik, Iceland to Natal, Brazil was the first in a series of repeat hydrography cruises to measure decadal changes in circulation, heat and fresh water budgets, and carbon inventory in the ocean. The cruises repeat a sub-set of the World Ocean Circulation Experiment/World Hydrographic Program (WOCE/WHP) lines occupied in each major ocean basin in the 1990ties.

The program is driven by the need to monitor the changing patterns of carbon dioxide (CO_2) in the ocean and provide the necessary data to support continuing model development that will lead to improve forecasting skill for oceans and global climate. The WOCE/JGOFS survey during the 1990s has provided a full depth, baseline data set against which to measure future changes. By integrating the scientific needs of programs requiring measurement of the full water column, major synergies and cost savings are achieved. These measurements are of importance both for major research programs, such as CLIVAR and the U.S. GCRP Carbon Cycle Science Program (CCSP), and for operational activities such as GOOS and GCOS. As outlined in the program documentation one component of a global observing system for the physical climate/CO₂ system should include periodic observations of hydrographic variables, CO_2 system parameters and other tracers. The large-scale observation component of the CCSP has a need for systematic observations of the invasion of anthropogenic carbon in the ocean superimposed on a variable natural background. The five topic areas that the $CO_2/CLIVAR$ repeat hydrography program addresses are:

- A. Carbon system studies
- B. Heat and freshwater storage and flux studies
- C. Deep and shallow water mass and ventilation studies
- D. Calibration of autonomous sensors
- E. Data for model calibration

Further descriptions of the repeat hydrography program can be found at:

http://ushydro.ucsd.edu/

Details of the A16N-2003a cruise can be found in the cruise instructions posted at the website of PMEL:

http://www.pmel.noaa.gov/co2/a16n/

and the repeat hydrography website:

http://ushydro.ucsd.edu/

The latter website also serves the full dataset from the cruise. The A16N-2003a cruise involved efforts of a dozen investigators whose names and project are listed in Table 1. The cruise was executed under leadership of Dr. John Bullister who served as chief scientist and Dr. Niki Gruber who was co-chief scientist. A full list of personnel on the cruise is given in Table 2. A list of participating institutions is in Table 3.

The cruise consisted of a transit leg from Charleston to Reykjavik on which limited surface water observations were taken. Surface water pCO2 measurements for the transit and the hydrography legs can be found at www.aoml.noaa.gov/ocd/gcc. The first hydrographic leg was from Reykjavik to Funchal, Madeira along the 20° W meridian and the second leg continued operations from Funchal to Natal, Brazil on a track southward and ending at 6° S, 25° W (see Figure 1).

This data report focuses on the measurement of dissolved inorganic carbon (DIC), fugacity of CO_2 (fCO₂), Total Alkalinity (TA), pH, nitrate (NO₃), nitrite (NO₂), phosphate (PO₄), silicate (SiO₄) and dissolved oxygen (O₂).

Methodology, instrumentation and standardization of these parameters improved significantly during the WOCE/JGOFS era. Notable developments include release of manuals detailing the analytical methods and operating protocols (DOE, 1994; http://cdiac.esd.ornl.gov/oceans /handbook.html). Certified Reference Materials (CRM) are now available for DIC and TA, which are run interspersed with samples to determine calibration offsets. On this cruise the TA values were adjusted accounting for the small difference between the CRMs run at sea and the certified value determined at SIO. For DIC there were problems with the gas loop calibrations attributed to inaccurate temperature sensors. The reference materials were therefore used as primary calibration for both DIC and TA..

Instrumentation improved as well in the last decade. Alkalinity measurements can be done with better precision through automation and close checks of the response of electrodes. Burettes are independently calibrated, and the preparation of titrant (hydrochloric acid) undergoes improved quality control and standardization (Millero et al., 1998). Measurement of pH is now done at extreme precision with spectrophotometric methods (Byrne and Breland, 1989). The DIC measurements are done by coulometry, a precise integrative method. During the A16 2003a cruise we utilized two single operator multi-parameter metabolic analyzers (SOMMAs) (Johnson et al., 1999) for analyses, which facilitated a sample throughput of up to 80 samples per day. The fCO₂ measurements were done with an equilibration system described in Wanninkhof and Thoning, (1993). For this cruise we changed the data reduction and calculation routines. Comparison of data with a cruise along a similar transect in 1993 shows a appreciable bias between results that is detailed in the section describing the pCO_2 analyses. Oxvaen measurements were performed by Winkler titrations (Carpenter, 1965) with photometric endpoint detection (Friederich et al., 1984). The titrator worked well but there were issues with errors in bottle volumes and problems with pipettes used to generate standard curves. Extensive postcruise trouble shooting and bottle volume re-determination were necessary to reduce the data.

The data underwent carefully quality assurance and quality control (QA/QC) both during the cruise and post-cruise. Precision of measurements was determined from duplicate sampling and comparison of deep-water data where little variability is expected. Outliers in the data were flagged based on several methods utilizing prior knowledge of the trends and known relationships between parameters. Depth profiles for each parameter were scrutinized for outliers. When deviations were observed, it was assessed if other parameters showed deviations. Inorganic carbon system parameters were linked through physical chemical properties and by knowledge of two of the four parameters, the other two can be calculated provided silicate, phosphate, temperature and salinity of the sample are known. These so-called over-determinations or internal consistency calculations were used to assess the difference between calculated and measured values. When the difference exceeded 10 µmol kg⁻¹ for the measured TA and the TA calculated from DIC and pH or fCO₂, the three parameters were scrutinized and compared with other methods to assess if the datum should be labeled as guestionable. Other techniques described in detail below include regional multi-linear regressions (MLR) between the inorganic carbon parameters and physical and chemical parameters known to correlate with them (for instance DIC = f(T, S, AOU, Si, PO4)). Again the differences between measured and calculated parameters are inspected. Finally the parameters were plotted against latitude for narrow depth intervals. Since changes along depth horizons are usually gradual, anomalies can be easily spotted and flagged.

This report describes the analytical procedures, calculations, and assessment of precision for DIC, TA, fCO_2 , and pH. This is followed by a description of the QA/QC methods based on internal consistency of these parameters and the MLR technique. The final section describes the procedures for measurement of nutrients and oxygen, and details the issues encountered during the cruise.

BOTTLE DATA COLLECTION AND ANALYTICAL METHODS

TOTAL DISSOLVED INORGANIC CARBON (DIC)

The DIC analytical equipment was set up in a seagoing laboratory van. The analysis was done by coulometry with two analytical systems (AOML-1 and AOML-2) used simultaneously on the cruise. Each system consisted of a coulometer (UIC, Inc.) coupled with a SOMMA (Single Operator Multiparameter Metabolic Analyzer) inlet system developed by Kenneth Johnson (Johnson et al., 1985,1987,1993; Johnson, 1992) formerly

of Brookhaven National Laboratory (BNL). In the coulometric analysis of DIC, all carbonate species are converted to CO_2 (gas) by addition of excess hydrogen ion (acid) to the seawater sample, and the evolved CO_2 gas is swept into the titration cell of the coulometer with compressed nitrogen, where it reacts quantitatively with a proprietary reagent based on ethanolamine to generate hydrogen ions. These are subsequently titrated with coulometrically generated OH-. CO_2 is thus measured by integrating the total charge required to achieve this.

The coulometers were calibrated by injecting aliguots of pure CO₂ (99.995%) by means of an 8port valve outfitted with two sample loops that had been calibrated by Kelly Brown, CCN Consulting (Wilke, 1993). However, due to large temperature variation the calibration factors obtained from gas loop measurements were of poor quality. Instead of using an average of the small and large loop values, we used a constant value for each analyzer throughout the entire cruise. The constant calibration value used for AOML-1 was 1.00532 and for AOML-2 1.00650. The CO₂ gas volumes bracketed the amount of CO₂ extracted from the water samples for the two AOML systems. All DIC values were corrected for dilution by 0.2 ml of HgCl₂ used for sample preservation. The total water volume of the sample bottles was 540 ml. The correction factor used for dilution was 1.00037. A correction was also applied for the offset from the Certified Reference Material (CRM) Batch 59, supplied by Dr. A. Dickson of Scripps Institution of Oceanography (SIO). This correction was applied for each cell using the CRM value obtained in the beginning of the cell. To check the stability of the coulometer and coulometer solutions, the CRMs were measured at the beginning, middle, and end of each coulometer cell solution. The coulometer cell solution was replaced after 25 mg of carbon was titrated, typically after 9-12 hours of continuous use. Sample titration times were 9-16 minutes.

Samples were drawn from the "Niskin" bottles into cleaned, precombusted 540-ml Pyrex bottles using Tygon tubing according to procedures outlined in the Handbook of Methods for CO_2 Analysis (DOE, 1994). Bottles were rinsed once and filled from the bottom, overflowing half a volume. Care was taken not to entrain any bubbles. The tube was pinched off and withdrawn, creating a 5-ml headspace, and 0.2 ml of saturated HgCl₂ solution was added as a preservative. The sample bottles were sealed with glass stoppers lightly covered with Apiezon-L grease, and were stored at room temperature for a maximum of 12 hours prior to analysis.

Replicate seawater samples were taken from the surface, 1000 m, and bottom "Niskin" sample bottles and run at different times during the cell. The first replicate of the surface water was used at the start of the cell with fresh coulometer solution, the second surface replicate and the first one of the 1000 replicates were run in the middle of the cell after about 12 mg of C were titrated. The second one of the 1000 m replicates and the first one of the bottom replicates were run at the end of the cell after about 25 mg of C were titrated, while the second one of the bottom replicate samples was run using a new coulometer cell solution, see. No systematic difference between the replicates was observed. The trends do not suggest any systematic dependency of results with amount of carbon titrated for a particular cell. The results of the duplicate samples have been presented in Figure 2, and Table 4 and 5.

Calculations

Calculation of the amount of CO_2 injected was according to the Department of Energy (DOE) CO_2 handbook [DOE, 1994].

The concentration of CO₂ ([CO₂]) in the samples was determined according to:

$$[CO_2] = Cal. factor * \frac{(Counts - Blank * Run Time) * K \mu mol/count}{pipette volume * density of sample}$$

where Cal factor is the calibration factor that were fixed for this cruise because of malfunctioning of gas loops, "Counts" is the instrument reading at the end of the analysis, "Blank" is the counts/minute determined from blank runs performed at least once for each cell of the solution, "Run Time" is the length of coulometric titration (in minutes), and K is the conversion factor from counts to μ mol which is dependent on the slope and intercept relation between instrument response and charge. For a unit with Ecal slope of 1 and intercept of 0, the constant is 2.0728 * 10^{-4} .

The blank values for AOML1 were in the range of 12.0-33.3 counts/min with an average value of 19.6 counts/min and a standard deviation of 6.8 counts/min. For AOML2 they were in the range of 12.0-30.0 counts/min with an average value of 21.7 counts/min and a standard deviation of 6.1 counts/min.

The pipette volume was determined by taking aliquots at known temperature of distilled water from the volumes prior to the cruise. The weights with the appropriate densities were used to determine the volume of the pipettes (AOML1: 28.726 cm³ @ 19.96°C, AOML2: 22.623 cm³ @ 22.63°C).

Calculation of pipette volumes, density, and final CO_2 concentration were performed according to procedures outlined in the DOE CO_2 handbook (DOE, 1994).

FUGACITY OF CO₂ (fCO₂)

Instrumentation

The fugacity of CO_2 was measured on the A16N-2003a cruise at a constant temperature of 20°C by equilibrating a 500-ml water aliquot in a volumetric flask with a closed headspace. The headspace is circulated through a non-dispersive infrared detector that measures both CO_2 and H_2O levels. The analytical instrumentation is detailed in Wanninkhof and Thoning (1993) and is the same as the setup used in the N.Atl-93 cruise that occupied the same cruise line in 1993 (Castle et al., 1998).

The system is patterned after that of Chipman *et al.* (1993) with modifications as presented in Wanninkhof and Thoning (1993). In short, in the system a 500-ml water sample is equilibrated at ambient pressure with an 80-ml headspace in a thermostatted volumetric flask. The headspace is circulated through a non-dispersive infrared analyzer, NDIR, LICOR model 6262. Upon equilibration the circulation flow is stopped and 30 readings of H₂O content and CO₂ content in the cell are taken over a 30-second interval and averaged. The system is a dual channel system where one equilibration occurs while circulating through the NDIR and a second flask is equilibrated offline. Once the first sample is analyzed the second flask is switched in line with the NDIR and the residual air in the NDIR is equilibrated with the second flask content. The second

equilibration phase through the NDIR takes less time as a large part of the headspace already is equilibrated offline. The two-channel configuration decreases the total analysis time to about 20 minutes for two samples.

The system is calibrated after every eight samples with six gaseous standards traceable to the manometrically determined values of C. D. Keeling of Scripps Institute of Oceanography. The mole fractions of the standards used during the A16N2003a cruise were:

Tank number	mole fraction
CA05989	378.7 ppm
CA05980	792.5 ppm
CA05984	1036.9 ppm
CA05940	1533.7 ppm
CA05988	593.6 ppm
CA05998	205.1 ppm

The standards are also used as the headspace gas for the equilibration. Since the mole fractions of the gases in the headspace prior to equilibration are known, the small perturbation of the fCO_2 in the water during the equilibration process can quantitatively be accounted for. The headspace gas is selected such that it is close the anticipated water value thereby minimizing the correction.

Data Reduction

The calculation of the fCO₂ involves several steps including the conversion of the NDIR output to an equivalent dried mole fraction of CO₂, the correction for the perturbation of the fCO₂ in water by equilibration, and the small adjustment from the measurement temperature to 20°C. For the reduction of the A16N-2003a fCO₂ we made an important adjustment in procedures. On previous cruises, the calibration of the samples that were run at 100 % water vapor pressure (@ 20°C) to the standards that are dry was done through an empirical algorithms created by running standards both wet and dry. For this cruise we relied on the internal correction from wet to dry mole fraction of CO₂ provided by the LI-COR 6262. This change is based on testing by our group and other investigators that showed that the correction provided by the instrument is of high quality and subject to less uncertainty than our empirical corrections. Since this is a fundamental change in our procedures we describe the old and new routine in detail below including comparison of the results.

The correction from detector output to (dry) mole fraction of CO_2 , XCO_2 in the headspace was previously done by measuring the voltage output of the CO_2 and H_2O channel. An empirical algorithm between dry standards and standards saturated with water vapor at 20°C was created of the form:

$$MVCO_2(dry) = MVCO_2 (wet) + A + B^*MVCO_2(wet) + C^*(MVCO_2(wet))^2$$

Where MV is the millivolt output of the CO_2 channel and $MVCO_2$ (wet) is the milli-volt value measured for the equilibrated headspace of the sample. From this algorithm the (water saturated) headspace gas is corrected to the dry state such that the samples can be directly related to the standard. The next step is the convert the $MVCO_2(dry)$ of the sample to a XCO_2 by creating a

curve of $MVCO_2(dry)$ vs. XCO_2 using the standards preceding and following the samples. For each sample the three standards closest to the samples are selected and a second-order polynomial was created of $MVCO_2$ vs. XCO_2 by averaging the appropriate standards preceding and following the sample. The second- order polynomial is then used to calculate the XCO_2 of the sample.

Following this step the fCO_2 in the headspace is calculated according to:

Where pH_2O is the water vapor pressure @ 20°C (= 0.0226 atm) and 0.9966 is the conversion factor from pCO_2 to fCO_2 @ 20°C.

The next step is the correction for change in the fCO_2 in the water sample due to exchange of CO_2 with the headspace during equilibration. This step is accomplished by using the mass balance criteria that the total amount of carbon in the headspace and water is conserved and by using the fact that the TA remains unchanged during equilibration. The DIC of the sample (determined independently) and the headspace gas concentration prior to equilibration along with the volume of water and headspace are used to calculate the total amount of carbon in the system. From the change in headspace CO_2 before versus after equilibration the change the DIC in the water can then be determined. From this change and the TA (calculated from DIC and fCO_2 after equilibration), the fCO_2 in the water before equilibration can then be determined.

The final step is to correct the fCO₂ from analysis temperature to 20°C. The water samples are always equilibrated within 0.1°C of 20°C such that this correction is less than 0.4 % of the value. The correction for perturbation of the fCO₂ in the water during equilibration and the temperature correction to 20°C are performed using the carbonate dissociation constants and the temperature dependence of the constants and the calculation routines described in (Peng et al., 1987)

For A16N-2003a the correction from the moist gas of the sample to an equivalent dry concentration was performed utilizing the internal correction routine built into the Li-6262 analyzer. This internal algorithm has been extensively checked by others and our tests showed that the correction was robust as well. The important advantage of this internal correction is that in our previous data reductions we assumed that the algorithm between wet and dry created in laboratory tests before the cruise or after the cruise does not change appreciably over time. This has proven not always to be the case. Secondly, the water vapor level measured during the standard runs can be appreciable despite absence of water vapor in the compressed gas standards since it takes a long time for the water vapor introduced by the equilibration of the samples to be flushed from the system. Therefore we see a decreasing trend of water vapor level when the six samples are run consecutively (see Figure 3).

The modified data reduction routine uses the $XCO_2(dry)$ calculated by the detector for both standards and samples. A second-order polynomial fit is created between the actual mole fraction of CO_2 in the standard and the instrument value. This standardization accounts instrument drifts over time. The detector was zeroed and spanned for CO_2 every day while the water vapor channel was spanned right before the first leg and before the second leg. Standardizing the water vapor channel is difficult because of the "stickiness" of the water vapor leading to lags and very slow response times. A polynomial is created for the three standards closest to the sample by averaging the pertinent standards before and after the sample. The other steps of correcting for small temperature deviations of the water bath from 20°C and correction to fCO_2 prior to equilibration are identical to the procedures outlined above.

The new correction routine results in small differences in values for calculated fCO_2 compared to the previous data reduction routine. Table 6 shows a comparison for station 45. The values

using the new reduction are systematically about 2 µatm lower than the old reduction method. The Table also gives the results of two different water vapor correction algorithms. One empirical correction was established before the cruise and one determined from running wet vs. dry standards after the cruise. The results show differences in the range from 7 to 17 µatm.

Quality Control

During the cruise a total of 1515 Niskin samples were analyzed for fCO_2 , compared to 2500 DIC samples. This was because only one full-time and a part -time operator were available for the work while two full-time analysts were involved in DIC analysis. A summary of the analysis statistics is given in Table 7.

The precision of the results is based on comparison of duplicate values and is estimated to be 2 μ atm or 0.3 % based on the results in Table 8. There is no apparent trend in imprecision with depth or absolute concentration when comparing absolute difference. The relative (%) difference is slightly higher for lower fCO₂ values found near the surface.

Deep-water comparison with the 1993 cruise (NAtl-93) and crossover with 1999 cruise (24N).

The A16N-2003a cruise overlapped or intersected with two previous cruises that were sampled by our group. The NAtl-93 cruise (Castle et al., 1998) followed the same track and was occupied during the summer of 1993 but it was run from South to North. A 24- bottle rosette was used such that fewer depth samples were obtained and the spacing of the stations was nominal 1 degree compared to 1/2 degree spacing on the 2003 occupation.

The 24N-98 cruise was run in February and intersected the A16N-2003a cruise near 24° N, 26.5° W. In the comparison we make the assumption that changes in deep water are negligible over the time period. The crossover with the 24 N cruise is shown in Figure 4. The fCO₂ shows a consistent offset with the 2003 data being about 18 µatm higher than the 1998 data. For the comparison with the 1993 data we looked at the deep water offset in the deep water for stations spaced about 5 degrees apart (Figure 5). Again a systematic bias is observed with the 2003 data being higher. The magnitude of the bias however is about 10 µatm. The cause of these offsets is disconcerting and attributed to the water vapor correction. However, the exact reason or possible corrections is not readily apparent.

The surface water fCO_2 levels are measured with a different system in underway mode near sea surface temperature and offer an independent assessment of agreement of fCO_2 values. However, the temperature correction has some uncertainties which complicate the comparison. For the comparison the $fCO_2(20)$ values are corrected to SST as determined by the thermosalinograph using the empirical correction of $\partial fCO_2/\partial T = 0.0423^{\circ}C^{-1}$ and by using the temperature dependence of the dissociation constant and using the thermodynamic equations. The results are shown in Figure 6 and show average differences of:

-3.30 \pm 4.9µatm (n=76)) for fCO₂(UW)-fCO₂(disc)Mehr and -6.66 \pm 4.1 µatm (n=76) for fCO₂(UW)-fCO₂(disc)4.23%.

In case of $fCO_2(UW)$ - $fCO_2(disc)Mehr$, the $fCO_2(20)$ are normalized to sea surface temperature using the Mehrbach constants as refit by Dickson and Millero. For $fCO_2(UW)$ - $fCO_2(disc)4.23\%$., the $fCO_2(20)$ are normalized to SST using the empirical relationship of $0.0423^{\circ}C^{-1}$. Again our temperature corrected discrete data are on average higher than the underway measurements. The differences $CO_2(UW)$ - $fCO_2(disc)Mehr$ and $fCO_2(UW)$ - $fCO_2(disc)4.23\%$ are plotted against temperature in Figure 7. There is a slight trend with temperature for the adjustments using the Mehrbach constants. Also, near 20°C when the adjustment is small the comparison shows that the discrete data is systematically higher. For the range from 18 to 22°C the difference is -5.1 \pm 4.9µatm (n=76) and -6.7 \pm 4.1 µatm (n=76) for fCO₂(UW)-fCO₂(disc)Mehr and fCO₂(UW)-fCO₂(disc)4.23% very similar to the average difference over the entire temperature range suggesting that the systematic offset is not attributable to the temperature correction alone.

Total Alkalinity (TA)

Seawater samples were drawn from the "Niskin" bottles with a 40-cm length of silicon tubing. One end of the tubing was fit over the petcock of the "Niskin" bottle and the other end was inserted into the bottom of a 500-ml Corning glass-stoppered sample bottle. The sample bottle was rinsed three times with approximately 300 ml of seawater. The sample bottle was slowly filled from the bottom. Once filled, the sample bottles were kept in a constant water bath at 25°C for half-hour before analysis.

The titration system used to determine TA consisted of a Metrohm 665 Dosimat titrator and an Orion 720A pH meter controlled by a personal computer (Millero et al., 1993). The acid titrant, in a water-jacketed burette, and the seawater sample, in a water-jacketed cell, were kept at 25±0.1°C with a Neslab constant-temperature bath. The plexiglass water-jacketed cells were similar to those used by Bradshaw et al. (1988), except that a larger volume (200 ml) was used to increase the precision. The cells had fill and drain valves with zero dead-volume to increase the reproducibility of the cell volume.

The HCl solutions used throughout the cruise were made, standardized, and stored in 500 cm³ glass bottles in the laboratory for use at sea. The 0.23202 M HCl solutions were made from 1 M Mallinckrodt standard solutions in 0.45 M NaCl to yield an ionic strength equivalent to that of average seawater (\approx 0.7 M). The acid was standardized using a coulometric technique by the Univ. of Miami and by Dr. Dickson of Scripps Institution of Oceanography (SIO). The two standardization techniques agreed to +/-0.0001 N.

The volume of HCl delivered to the cell is traditionally assumed to have a small uncertainty (Dickson, 1981) and is equated with the digital output of the titrator. Calibrations of the Dosimat burettes with Milli Q water at 25°C indicated that the systems deliver 3.000 ml (the value for a titration of seawater) to a precision of 0.0004 ml. This uncertainty resulted in an error of 0.4 μ mol/kg in TA.

The titrators were calibrated in the laboratory before the cruise. Certified standard Reference Material (CRM) **Batch 59** prepared by Dr. Dickson was used at sea to monitor the performance of the titrators. All TA data have been corrected based on CRM values for each cell and each leg. (Millero et al, 2000), see Table 9.

рΗ

Seawater samples were drawn from the "Niskin" bottles with a 20-cm length of silicon tubing. One end of the tubing was fit over the petcock of the "Niskin" bottle and the other end was attached over the opening of a 10-cm glass spectrophotometric cell. The spectrophotometric cell was rinsed three to four times with a total volume of approximately 200 ml of seawater; the Teflon endcaps were also rinsed and then used to seal a sample of seawater in the glass cell. While

drawing the sample, care was taken to make sure that no air bubbles were trapped within the cell. The sample cells were kept in a waterbath at 20°C for a half an hour before analysis.

Seawater pH was measured using the spectrophotometric procedure (Byrne, 1987) and the indicator calibration of Clayton and Byrne (1993). The indicator was an 8.0-mM solution of m-cresol purple sodium salt ($C_{21}H_{17}O_5Na$) in MilliQ water.

The absorbance measurements were made using a Varian Cary 2200 spectrophotometer. The temperature was controlled to a constant temperature of 25° C with an Endocal RTE 8DD refrigerated circulating temperature bath that regulates the temperature to $\pm 0.01^{\circ}$ C. The temperature was measured using a Guildline 9540 digital platinum resistance thermometer.

Nutrients

Sampling and analytical methods

Nutrient samples were collected from Niskin bottles in acid washed 25-mL linear polyethylene bottles after at least three complete seawater rinses and analyzed within 2 hours of sample collection. Measurements were made in a temperature-controlled bioanalytical laboratory ($20 \pm 2^{\circ}$ C) aboard the NOAA Ship R. Brown. Concentrations of nitrite (NO₂⁻), nitrate (NO₃⁻), phosphate (PO₄³⁻) and silicic acid (H₄SiO₄) were determined using a modified Alpkem Flow Solution Auto-Analyzer coupled with a modified RFA 301 autosampler. Sample and wash time for the auto sampler were set at 120 and 5 seconds, respectively. The following analytical methods were employed:

Nitrate and Nitrite:

Nitrite was determined by diazotizing with sulfanilamide and coupling with N-1 naphthyl ethylenediamine dihydrochloride to form an azo dye. The color produced is measured at

540 nm (Zhang et al., 1997a). Samples for nitrate analysis were passed through a home- made cadmium column (Zhang et al, 2000), which reduced nitrate to nitrite. Total nitrite, mostly from reduction of nitrate with a small amount of nitrite present in the original samples, was then determined as described above. Nitrate concentrations in seawater samples were calculated by difference.

Phosphate:

Phosphate in the samples was determined by reacting with molybdenum (VI) in an acidic medium to form a phosphomolybdate complex. This complex was subsequently reduced with hydrazine at a temperature of 55°C to form phosphomolybdenum blue (Zhang et al., 2001). An AAII detector with an 880 nm filter was used to measure the absorbance during the cruise.

Silicic Acid:

Silicic acid in the samples was analyzed by reacting with molybdate in a acidic solution to form β -molybdosilicic acid. The β -molybdosilicic acid was then reduced by ascorbic acid to form molybdenum blue (Zhang et al., 1997b). The absorbance of the molybdenum blue was measured at 660 nm.

Calibration and standards:

The low-nutrient seawater used for the preparation of working standards, determination of blank and wash between samples was filtered seawater obtained from the surface of the Gulf Stream. Stock standard solutions were prepared by dissolving high purity standard materials (KNO₃, NaNO₂, KH₂PO₄ and Na₂SiF₆) in deionized water. Working standards were freshly made at each station by diluting the stock solutions in low-nutrient seawater. Standardizations were performed prior to each sample run with working standard solutions. Two or three replicate samples were collected from a Niskin bottle that was sampled at deepest depth at each cast. The relative standard deviation from the results of these replicate samples were used to estimate the overall precision obtained by the sampling and analytical procedures. The precisions of analyses were 0.08 µmol/kg for nitrate, 0.01 µmol/kg for phosphate and 0.1 µmol/kg for silicic acid, respectively.

Oxygen

Method

The analytical method for dissolved oxygen in seawater during 2003 A16N cruise was based on automated Winkler titration by Williams and Jenkinson (1982) and modified by Friederich et al. (1991). Dissolved oxygen samples were withdrawn from 10-L Niskin bottles to 145-ml Pyrex brand iodine flasks (Corning 5400, Corning, New York, USA). The exact volume of each flask at room temperature had been gravimetrically calibrated with its ground glass stopper following standard procedures (DOE, 1994; WHP Operations and methods, 1991). One ml of manganese chloride reagent and one ml of alkaline iodide reagent were added to each sample in the iodine flasks and its stopper was placed in the bottle neck. The bottles were shaken vigorously for about one minute to completely fix oxygen with manganese hydroxide. In this method, dissolved oxygen in the sample reacts with manganese hydroxide to form $Mn(OH)_3$ precipitate. Particulate $Mn(OH)_3$ dissolve upon the acidification and resulting Mn³⁺ oxidize iodide to iodine in acidic solution. The liberated iodine complex with excess iodide forming I₃ and the latter is titrated with a sodium thiosulfate solution that is standardized by a primary standard potassium iodate. The complex I_3 has a maximum absorbance at 352 nm and change in absorbance of I_3 at 352 nm is used to detect the end point. A custom-build automated oxygen titrator with MS DOS interfacing software was used to determine dissolved oxygen concentrations in the samples.

A total of 5011 seawater samples were taken from 150 stations and analyze for dissolved oxygen concentrations. At the beginning of cruise, a test CTD cast was made by sampling 20 Niskin bottles from same depth (170 m). Analysis of these samples was listed in Table 10 and indicate a precision of 0.3 micromole/L. Throughout the cruise duplicate samples from same Niskin bottle were collected at each station to estimate the precision of overall measurement (sampling and analysis). Analyses of 300 replicate samples listed in Table 11 indicated that the precision of shipboard automated Winkler titration is 0.29 including all outliers and 0.24 micromole/L excluding the outliers. Analysis of outliers indicated that most outliers in duplicate analysis were due to errors in the volumes of oxygen bottles if it is not a problem with Niskin bottles or sampling error. The outliers in vertical profiles of oxygen were also used to identify the bottles that might have errors in volumes. Total of 33 sample bottles were recalibrated and 11 of them had volume errors greater than 0.3 ml (Table 12). This accounts about 5 % of sample bottles used during the A16N cruise. The volumes of such identified questionable oxygen bottles were recalibrated after the cruise and dissolved oxygen concentrations were recalculated for those samples using correct volumes.

The primary iodate standard solution was prepared from high purity reagent grade KIO_3 (Mallinckrodt, USA), pre-dried in an oven at 110°C for overnight and cooled in a desiccator before weighing. The thiosulfate solution was prepared from reagent grade $Na_2S_2O_3 \cdot 5H_2O$ (Mallinckrodt, USA). During the cruise, total of 25 bottles of thiosulfate

solutions (1 liter each) were consumed for oxygen analyses. Each new bottle of thiosulfate solution was first standardized by the primary standard KIO₃ solution before using it for sample titration. Standardizations of the thiosulfate solutions were performed by titration of known amounts of KIO₃ solution (usually 2, 4, 6, and 8 ml). Regression analysis of four titration points generates a slope (factor) and an intercept (blank) from which sample concentration are calculated. Extending KIO₃ solution to 20 ml produced essentially the same calibration curve as shown in the thiosulfate bottle 21 in Table 13. Each bottle of thiosulfate usually lasts for 2 to 3 days of sample titration. The thiosulfate bottle 24 had replicate standardization. The thiosulfate bottle 19 was standardized at the beginning and the end of its life span to check its stability during storage. All the replicate analyses produced acceptable results within uncertainty of standardization as shown in Table 13. It should be pointed out that at beginning of cruise there are several standardizations with lower slopes and larger intercepts as shown in Figure 8. These were attributed to malfunction of titration system used during that period. When system is functioning properly it produced slopes within 1% of the theoretical value of 24.818 and intercepts less than \pm 0.01 as shown in most part of cruise in Figure 8.

At the beginning of leg 2 (from stations 72 to 79) a problematic automatic pipette was used to deliver the KIO_3 standard solution for standardization of thiosulfate solution in bottle 14. An unusually high slope was observed and this pipette was not used in subsequent analyses. Shipboard and post cruise comparison indicated that there is an error in volume delivery of this automatic pipette. Dissolved oxygen concentrations from station 72 to 79 have been corrected for errors in volume delivery of iodate solution by this automatic pipette used in the standardization of thiosulfate solution. A correction factor (1.0153) was estimated based on post-cruise recalibration of the automatic pipette as shown in Table 14 and was applied to data from station 72 to 79.

Since the Dosimat titrators have demonstrated high precision and accuracy (0.05 and 0.2% at delivery of 10ml solution, respectively) in volume delivery of titrants, we recommend use a Dosimat or similar positive displacement burette to quantitatively dispense the iodate standard solution in the future cruises. This procedure can improve the accuracy of shipboard oxygen analysis.

ACKNOWLEDGMENTS

The dedication and assistance of the officers and crew of the NOAA Ship RONALD H. BROWN is gratefully appreciated and hereby acknowledged. This research was supported by the Climate Observation and Services Panel of NOAA. We wish to acknowledge the COSP program manager Mike Johnson for supporting the field program. The CO2 CLIVAR repeat hydrography program is a joint effort between NOAA and NSF-OCE. Eric Itchweire of NSF was instrumental in forming the program.

REFERENCES

- Bradshaw, A.L. and Brewer, P.G., 1988. High precision measurements of alkalinity and total carbon dioxide in seawater by potentiometric titration-1. Presence of unknown protolyte(s)?, *Mar. Chem.*, 23, 69-86.
- Byrne, R.H., and J.A. Breland, High precision multiwavelenth pH determinations in seawater using cresol red, *Deep-Sea Research*, *36*, 803-810, 1989.
- Byrne, R. H., 1987. Standardization of standard buffers by visible spectrometry. *Anal.Chem.*, **59**, 1479-1481.
- Carpenter, J.H., The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method, *Limnol. Oceanogr.*, *10*, 141-143, 1965.
- Castle, R., R. Wanninkhof, S.C. Doney, J. Bullister, L. Johns, R.A. Feely, B.E. Huss, F.J. Millero, and K. Lee, Chemical and hydrographic profiles and underway measurements from the North Atlantic during July and August of 1993, NOAA data report ERL AOML-32, NOAA/AOML, Springfield NJ, 1998.
- Chipman, D.W., J. Marra, and T. Takahashi, Primary production at 47°N and 20°W in the North Atlantic Ocean: A comparison between the 14C incubation method and mixed layer carbon budget observations, *Deep-Sea Research II, 40*, 151-169, 1993.
- Clayton T. and Byrne, R.H., 1993. Calibration of m-cresol purple on the total hydrogen ion concentration scale and its application to CO₂-system characteristics in seawater, *Deep-Sea Research*, 40, 2115-2129.
- Dickson, A.G., 1981. An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total CO₂ from titration data, *Deep-Sea Res.*, <u>28</u>, 609-623.
- DOE, Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water; version 2, edited by A.G. Dickson, and C. Goyet, DOE, 1994.
- Friederich, G.E., L.A.Codispoti and C. M. Sakamoto, An Easy-to-constructed Winkler titration system. Monterey Bay Aquarium Research Institute, 1991; Technical Report No. 91-6.
- Friederich, G.E., P. Sherman, and L.A. Codispoti, A high precision automated Winkler titration system based on a HP-85 computer, a simple colorimeter and an inexpensive electromechanial buret, *Bigelow Lab. Technical Report*, *42*, 24 pp, 1984.
- Johnson, K.M., A. Körtzinger, L. Mintrop, J.C. Duinker, and D.W.R. Wallace, Coulometric total carbon dioxide analysis for marine studies: measurement and internal consistency of underway surface TCO₂ concentrations, *Mar. Chem*, *Accepted*, 1999.
- Johnson, K.M., Wills, K.D., Butler, D.B., Johnson, W.K., and Wong C.S., 1993. Coulometric total carbon dioxide analysis for marine studies: Maximizing the performance of an automated continuous gas extraction system and coulometric detector. *Mar. Chem., 44*, 167–189.
- Johnson, K.M., 1992 Operator's manual: Single operator multiparameter metabolicanalyzer (SOMMA) for total carbon dioxide (CT) with coulometric detection. Brookhaven National Laboratory, Brookhaven, N.Y., 70 pp.
- Johnson, K.M., Williams, P.J., Brandstrom, L., and Sieburth J. McN., 1987. Coulometric total carbon analysis for marine studies: Automation and calibration. *Mar. Chem., 21*, 117–133.

- Johnson, K.M., King, A.E., and Sieburth, J. McN., 1985. Coulometric DIC analyses formarine studies: An introduction. *Mar. Chem.*, *16*, 61–82.
- Millero, F. J., Zhu, X., Liu, X., Roche, M. P., Moore, C., Jolliff, J., 2000. The pH and TA along 24° North in the Atlantic Ocean. Univ. of Miami Technical Report No. RSMAS-2000-03, 41 pp.
- Millero, F.J., et. al. Total alkalinity measurements in the Indian Ocean during the WOCE Hydrographic Program CO₂ survey cruises 1994-1996, *Mar. Chem.*, *63*, 9-20, 1998.
- Millero F. J., Zhang, J. Z., Lee, K., and Campbell, D. M., 1993. Titration alkalinity of seawater, *Marine Chemistry*, <u>44</u>, 153-165.
- Peng, T.-H., T. Takahashi, W.S. Broecker, and J. Olafsson, Seasonal variability of carbon dioxide, nutrients and oxygen in the northern North Atlantic surface water: observations and a model, *Tellus*, 39B, 439-458, 1987.
- Wanninkhof, R., and K. Thoning, Measurement of fugacity of CO₂ in surface water using continuous and discrete sampling methods, *Mar. Chem.*, *44* (2-4), 189-205, 1993.
- WHP Operation and methods: dissolved oxygen by C.H. Culberson, 1991.
- Wilke, R.J., Wallace, D.W.R., and Johnson, K.M., 1993. Water-based gravimetric method for the determination of gas loop volume. *Anal. Chem.* 65, 2403–2406.
- Williams, P.J.LeB and N.W. Jenkinson, A transportable microprocessor-controlled precise Winkler titration suitable for field station and shipboard use. *Limnol. Oceangr.*, 1982; 27:576-584.
- Zhang, J-Z., C. Fischer and P. B. Ortner, (2001) Continuous flow analysis of phosphate in natural waters using hydrazine as a reductant, *International Journal of Environmental Analytical Chemistry*, 80(1): 61-73.
- Zhang, J-Z., C. Fischer and P. B. Ortner, (2000) Comparison of open tubular cadmium reactor and packed cadmium column in automated gas-segmented continuous flow nitrate analysis. *International Journal of Environmental Analytical Chemistry*, **76**(2):99-113.
- Zhang, J-Z., P. B. Ortner and C. Fischer, (1997a) Determination of nitrite and nitrate in estuarine and coastal waters by gas segmented continuous flow colorimetric analysis. EPA's manual " *Methods for the determination of Chemical Substances in Marine and Estuarine Environmental Matrices - 2nd Edition*". EPA/600/R-97/072, September 1997.
- Zhang, J-Z., and G. A. Berberian, (1997b) Determination of dissolved silicate in estuarine and coastal waters by gas segmented continuous flow colorimetric analysis. EPA's manual " Methods for the determination of Chemical Substances in Marine and Estuarine Environmental Matrices - 2nd Edition". EPA/600/R-97/072, September 1997.

Figure 1: Cruise track for the Atlantic Ocean A16N_2003a cruise in June-August 2003

	Average	Stdev
Surface Water	1.0	0.9
1000 m	1.2	0.8
Deep Water	1.4	0.9

Figure 2: DIC duplicates

Figure 3: Change in water vapor concentration (in millivolts) when a set of 6 (dry) standards are run showing that some residual water vapor remains in the lines after water samples are equilibrated . Watersamples which show an H₂O response of about 2200 mV.

Figure 4: Comparison of fCO₂ (20) profiles for a crossover location between a cruise in 1998 and the A16N_203a cruise

Figure 5: Comparison of deep-water fCO_2 values for a cruise in 1993 and the A16N_2003a cruise at a depth range of 4000 to 5000 m

Figure 6: Comparison of underway fCO_2 measurements (line) with the discrete samples normalized to the same temperature as the underway measurements using an empirical relationship of 4.23 %°C⁻¹ (diamonds) and the constants of Mehrbach (open squares).

Figure 7: Difference in underway fCO₂ measurements and with the discrete samples normalized to the same temperature as the underway measurements using an empirical relationship of 4.23 %°C⁻¹ (open squares) and the constants of Mehrbach (solid squares).

Figure 8: Shipboard standardization of thiosulfate solution during 2003 A16N cruise: slopes in the upper panel and intercepts in the lower panel.

Table 1: Principal Investigators

Project	Name	Institution
CTD	Gregory Johnson	PMEL
Salinity	Gregory Johnson	PMEL
CTD/O2	Gregory Johnson	PMEL
Chlorofluorocarbons (CFCs)	John Bullister	PMEL
Chlorofluorocarbons (CFCs)	Mark Warner	UW
HCFs	Shari Yvon-Lewis	AOML
Total CO2(DIC), pCO2	Richard Feely	PMEL
Total CO2(DIC), pCO2	Richard Wanninkhof	AOML
Nutrients	Calvin Mordy	PMEL
Nutrients	Jia-Zhong Zhang	AOML
Dissolved Oxygen	Jia-Zhong Zhang	AOML
Helium/tritium	Peter Schlosser	LDEO
Total Alkalinity	Frank Millero	Miami
рН	Frank Millero	Miami
Trace Metals	Christopher Measures	Hawaii
Trace Metals	William Landing	FSU
Aerosols	William Landing	FSU
ADCP	Eric Firing	Hawaii
ALACE Float deployment	Breck Owens	WHOI
ALACE Float deployment	Silvia Garzoli	AOML
PIC/POC	Jim Bishop	LBNL
DOC	Dennis Hansell	Miami
13-C, 14-C	Ann McNichol	WHOI
Alkyl Nitrate	Eric Saltzman	UCI
Bathymetry	Ship personnel	
Underway thermosalinograph	Ship personnel	

Position	Name	Institution	Nationality	Leg 0	Leg 1	Leg 2
Chief Scientist	John Bullister	PMEL	US		*	*
Co-Chief Scientist	Nicolas Gruber	UCLA	Swiss		*	*
Data Manager	Frank Delahoyd	SIO	US		*	*
Grad Student	Nicole Lovenduski	UCLA	US			*
Grad Student	Elena Brambilla	SIO	Italy		*	
Grad Student	Regina Cesario	UW	US		*	
CTD Data Processor	Kristene McTaggart	PMEL	US		*	*
ET	Douglas Anderson	AOML	US		*	
ET	David Bitterman	AOML	US			*
LADCP	Julia Hummon	UH	US		*	*
Salinity	Gregory Johnson	PMEL	US		*	
Salinity	David Wisegarver	PMEL	US			*
02	George Berberian	AOML	US		*	*
Nutrients	Jia-Zhong Zhang	AOML	US			*
Nutrients	David Wisegarver	PMEL	US		*	
Nutrients	Charles Fischer	AOML	US			*
Nutrients	Calvin Mordy	UW-JISAO/PMEL	US		*	
CFC	Mark Warner	UW	US		*	*
CFC	Eric Wisegarver	PMEL	US		*	*
Helium/Tritium		LDEO			*	*
HCFC	Shari Yvon-Lewis	AOML			*	*
Alkalinity & pH	Xiaorong Zhu	UM	China		*	*
Alkalinity & pH	Taylor Graham	UM	US	*	*	
Alkalinity & pH	Mike Trapp	UM	US			*
Alkalinity & pH	Vanessa Koehler	UM	US	*	*	*
Alkalinity & pH	William Hiscock	UM	US	*	*	
Alkalinity & pH	David Sergio Valdes	UM	Mexico			*
Alkalinity & pH	Denis Pierrot	UM	France	*		
DIC1	Esa Peltola	AOML	US		*	*
DIC2	Robert Castle	AOML	US		*	*
pCO2	Dana Greeley	PMEL	US		*	*
pCO2	Kevin Sullivan	UM-CIMAS/AOML	US	*		
Trace Metal	Chris Measures	UH	Chile		*	*
Trace Metal	Rodrigo Torres	WHOI	US	*	*	*
Trace Metal	Matt Brown	UH		*		
Aerosol	William Landing	FSU	US	*	*	*
Aerosol	Clifton Buck	FSU	US	*	*	*
Aerosol	Erik Kvaleberg	FSU	Norway	*		
Aerosol	Anthony Arguez	FSU	US	*		
POC/PIC	Jim Bishop	LBNL	US		*	
POC	Alexey Mishonov	TAMU	Ukraine		*	
DOC	Stacy Brown	UM	US		*	
Alkyl Nitrate	Elizabeth Dahl	UCI				
CIRIMS-IR-SST	Trina Litchendorf	UW	US	*		

 Table 2: Personnel on the cruise

The Chief Survey Technician aboard the *R/V Ronald Brown* for the cruise was Jonathan Shannahoff.

Table 3: Participating Institutions

Institution		Address
NOAA, Atlantic Oceanographic and	AOML	4301 Rickenbacker Causeway,
Meteorological Laboratory		Miami, FL 33149-1098
Florida State Univ.	FSU	0102 OSB, West Call Street
Department of Oceanography		Tallahassee, FL 32306
EO Lawrence Berkeley National Laboratory	LBNL	1 Cyclotron Road
		Berkeley, California 94720
The Lamont-Doherty Earth Observatory	LDEO	61 Route 9W
		Palisades, NY 10964-1000
NOAA, Pacific Marine Environmental	PMEL	7600 Sand Point Way NE
Laboratory		Seattle, WA 98115-0070
Scripps Institution of Oceanography	SIO	8602 La Jolla Shores Drive
		La Jolla, CA. 92037
Texas A&M Univ., Department of Oceanography	TAMU	College Station, TX 77843-3146
Univ. of California, Irvine, Earth System Science	UCI	Irvine, CA 92697-3100
Univ. of California, Institute of Geophysics and	UCLA	5853 Slichter Hall,
Planetary Physics & Dept. of Atmospheric Sci		Los Angeles, CA 90095-1567
Univ. of California, San Diego	UCSD	9500 Gilman Drive
		La Jolla, CA 92093 - 0214
Univ. of Hawaii, Department of Oceanography,	UH	1000 Pope Rd, Marine Sci. Bldg,
Univ. of Hawai`i at Manoa		Honolulu, HI 96822
Univ. of Miami	UM	4301 Rickenbacker Causeway,
		Miami, Florida 33149
Univ. of Miami/Cooperative Institute for	UM-CIMAS	4301 Rickenbacker Causeway,
Marine and Atmospheric Studies		Miami, Florida 33149
Univ. of Washington	UW	Box 357940, Seattle,
		WA 98195-7940
Univ. of Washington/Joint Institute for	UW-JISAO	Box 357940, Seattle,
Study of the Atmosphere and Ocean		WA 98195-7940
Woods Hole Oceanographic Institution	WHOI	Co-op Building, MS #16
		Woods Hole, MA 02543

 Table 4:
 Dissolved Inorganic Carbon Duplicate Statistics

	BB	BM	ME	BE	DC	DI	BEBE	MM	EE	Deleted
Average:	0.8	1.3	1.2	1.3	1.4	0.7	-	1.3	1.0	
Stdev:	0.80	0.94	0.57	1.27	0.86	0.42	-	1.01	0.30	
Number:	94	39	13	8	56	3	0	6	3	64
Total:	286									

Duplicate Statistics:

BB	The duplicate samples were measured back-to-back
BM	One duplicate was measured in the beginning and the other one in the end of the cell
ME	One duplicate was measured in the middle and the other one in the end of the cell
BE	One duplicate was measured in the beginning and the other one in the end of the cell
DC	The duplicates were run on a same instrument, but on different cells
DI	The duplicates were run on different instruments
BEBE	Both duplicates were measured in the beginning of the cell, but not back-to-back
MM	Both duplicates were measured in the middle of the cell, but not back-to-back
EE	Both duplicates were measured in the end of the cell, but not back-to-back

Station#	Cast#	Bottle#	Pressure/db	DIC µmol/kg	Stdev
1	1	1	200	2145.9	0.38
1	1	11	2	2099.3	1.71
2	1	1	553	2157.6	0.36
2	1	18	2	2105.8	0.86
3	1	1	1,009	2157.6	1.23
5	1	1	1,816	2161.5	0.81
5	1	8	1,000	2157.2	1.23
6	1	29	2	2085.1	1.11
7	1	29	2	2079.5	0.15
8	1	30	2	2068.8	0.52
10	1	32	2	2064.4	0.16
11	1	12	1,051	2168.3	0.72
11	1	33	3	2064.7	1.19
12	1	32	2	2062.6	0.25
13	1	33	2	2063.3	0.86
15	1	1	1,647	2161.9	0.50
15	1	27	2	2090.1	0.60
16	1	1	1,168	2172.1	0.70
17	1	21	2	2082.7	0.87
19	1	1	1,464	2159.3	1.70
21	1	26	9	2088.8	0.54
22	1	25	6	2083.1	0.17
23	1	1	1,418	2160.7	0.05
24	1	31	3	2088.7	0.04
25	1	1	2,706	2190.1	0.41
25	1	26	125	2128.7	0.03
25	1	32	2	2080.1	1.84
26	1	33	3	2090.8	0.22
27	1	1	3,812	2203.2	0.18
27	1	13	1,050	2166.7	0.80
29	1	14	1,100	2172.0	0.51
29	1	35	20	2086.3	1.75
30	1	33	2	2082.2	0.74
31	1	1	4,472	2204.0	1.60
31	1	13	1,050	2180.3	0.49
32	1	35	2	2075.3	0.98
33	1	1	4,482	2201.4	0.27
33	1	14	1,002	2177.5	0.49
34	1	33	3	2072.3	0.60
36	1	24	8	2079.6	0.34
41	1	20	1,001	2180.5	0.13
41	2	24	4	2069.7	0.50
42	1	23	25	2070.1	0.05
43	1	1	4,066	2197.4	0.75
43	1	14	1,003	2182.1	1.45
43	1	35	4	2070.2	0.25

 Table 5:
 Dissolved Inorganic Carbon (DIC) Duplicates

Station#	Cast#	Bottle#	Pressure/db	DIC	Stdev
				µmol/kg	
44	2	32	3	2067.4	0.03
45	1	1	5,240	2200.0	0.53
45	1	14	1,001	2184.3	1.73
45	1	35	3	2067.2	0.68
46	1	33	3	2067.6	2.01
47	1	1	2,458	2169.3	1.26
47	1	10	1,049	2192.6	1.47
47	1	31	3	2068.4	0.28
48	2	30	3	2070.7	0.49
49	1	1	4,775	2197.9	1.64
51	1	15	1,046	2190.3	0.05
51	1	35	3	2069.7	2.05
52	1	1	4,734	2198.0	1.72
52	1	33	4	2069.9	0.91
53	1	1	4,826	2201.0	1.04
53	1	14	900	2179.3	1.10
53	1	32	19	2066.9	0.53
54	1	35	3	2068.2	1.82
55	2	1	5,218	2200.6	0.14
55	2	17	950	2189.1	0.43
55	2	30	92	2099.1	0.25
55	2	35	4	2085.9	0.29
57	2	1	3.875	2196.1	0.64
57	2	35	4	2086.4	0.60
58	1	35	4	2092.6	2.11
59	1	15	1.051	2194.2	1.71
59	1	35	3	2090.1	1.04
60	1	33	3	2089.6	0.32
61	2	1	5,215	2201.5	0.26
61	2	17	992	2185 1	0.81
61	2	35	4	2085.9	0.67
62	1	35	3	2095.4	0.30
63	2	1	5,319	2200 1	0.71
63	2	. 14	1 051	2190.1	0.01
63	2	35	.,	2107.4	0.93
64	1	35	<u> </u>	2094 4	1 43
65	. 1	1	5 343	2198.8	0.36
65	. 1	33	3	2109.3	1 39
66	. 1	35	3	2105.5	0.78
67	2	1	5 252	2200.5	0.70
67	2	17	951	2190.2	1.62
67	2	35	4	2104.1	1.84
68	1	17	942	2186.7	1.04
88	1	25	2	2100.7	0.62
0	1	1	5 317	2100.5	2 22
60	1	14	1 002	2187.6	0.54
09	1	1-+	1,002	2107.0	0.04

 Table 5: Dissolved Inorganic Carbon (DIC) Duplicates (continued)

Station#	Cast#	Bottle#	Pressure/db	DIC	Stdev
otation#	Ua31#	Dottien	Tressure/ub	µmol/kg	Oldev
69	1	35	4	2101.5	0.27
70	1	33	3	2103.2	0.02
71	1	1	5,332	2199.4	0.99
71	1	17	951	2186.6	0.59
71	1	35	3	2103.0	0.17
72	2	1	5,332	2198.1	0.41
72	2	17	950	2188.8	0.57
72	2	31	65	2095.3	0.92
72	2	35	3	2109.7	1.77
74	1	1	5,275	2199.4	1.87
74	1	14	1,000	2191.4	0.40
74	1	35	4	2111.0	1.54
75	1	35	3	2111.9	0.63
76	1	1	5,306	2198.7	0.80
76	1	13	1,050	2197.3	1.86
76	1	35	4	2112.4	0.05
78	2	1	5,329	2193.8	1.01
78	2	35	3	2103.6	0.05
79	1	35	3	2109.9	0.55
80	1	14	1,000	2196.4	0.57
80	1	35	3	2108.1	0.17
81	1	35	4	2096.7	0.65
82	2	1	5,491	2201.1	0.17
82	2	17	949	2195.7	0.52
82	2	35	4	2100.5	0.04
83	1	35	4	2101.6	0.36
84	1	1	5,551	2202.9	0.88
84	1	17	950	2205.3	0.90
84	1	35	4	2102.1	1.65
85	1	35	4	2097.5	1.73
86	1	35	3	2100.1	0.09
87	1	35	4	2082.8	0.56
88	2	1	5,528	2201.2	0.34
88	2	17	949	2209.3	0.59
88	2	35	4	2086.0	1.88
89	1	35	3	2083.5	0.72
90	1	1	5,125	2198.7	1.31
90	1	14	1,000	2209.0	2.12
91	1	35	3	2065.0	0.53
92	1	1	4,874	2201.0	1.05
92	1	12	1,050	2208.2	1.57
92	1	35	4	2064.0	2.10
94	2	1	4,632	2200.6	0.55
94	2	33	3	2062.8	0.29
95	1	35	4	2064.9	0.47
96	1	1	4,612	2202.5	2.00

 Table 5: Dissolved Inorganic Carbon (DIC) Duplicates (continued)

Station#	Cast#	Bottle#	Pressure/db	DIC	Stdev
otation#	Ua31#	Dottien	Tressure/up	µmol/kg	Oldev
96	1	15	950	2216.7	1.24
96	1	35	3	2055.3	0.08
97	1	33	3	2063.7	0.82
98	2	13	1,000	2211.4	0.77
98	2	33	4	2035.1	0.49
100	2	1	3,892	2203.1	0.68
100	2	12	1,050	2220.2	0.19
100	2	33	4	2048.2	0.14
101	1	35	3	2035.8	0.09
104	2	1	5,534	2207.5	1.41
104	2	20	548	2240.9	0.10
104	2	35	3	2040.4	0.24
105	1	35	3	2025.6	0.54
106	2	1	5,796	2198.2	1.94
106	2	35	4	2026.5	0.21
107	1	35	3	2013.5	0.20
108	1	1	5,798	2199.3	0.69
108	1	15	749	2238.0	1.96
108	1	35	3	2018.2	0.69
109	1	35	3	2028.2	0.04
110	2	1	6,071	2198.1	0.24
110	2	35	3	2026.0	0.03
111	1	35	3	2019.1	0.93
112	1	1	5,446	2201.7	0.23
112	1	17	950	2226.5	0.64
112	1	35	3	2004.8	1.92
113	1	35	3	1977.0	0.73
114	1	1	5,296	2205.2	0.96
114	1	14	1,001	2223.8	0.60
114	1	33	20	1978.5	0.50
116	2	1	5,162	2206.6	2.36
116	2	20	424	2226.5	0.18
116	2	35	3	1955.0	0.01
117	1	35	4	1953.3	0.52
118	2	1	4,422	2193.1	2.31
118	2	13	1.000	2224.7	0.83
118	2	33	3	1954.8	0.18
119	1	35	3	1951.9	0.11
120	1	1	4,358	2193.9	1.04
120	1	20	449	2238.3	0.26
120	1	35	4	1944.9	1.08
121	1	35	3	1948.3	0.28
122	2	1	4.577	2197.4	0.16
122	2	13	1.051	2217 4	0.93
122	2	33	10	1986.5	0.30
123	1	35	4	1987.8	1.40

 Table 5: Dissolved Inorganic Carbon (DIC) Duplicates (continued)

Station#	Cast#	Bottle#	Pressure (db)	DIC µmol/kg	Stdev
124	1	1	4,088	2195.7	0.12
124	1	35	3	1987.2	0.63
125	1	35	3	1986.0	0.96
126	2	18	550	2218.4	1.62
126	2	33	10	1986.7	0.26
127	1	35	3	1989.8	0.16
128	1	1	3,803	2191.6	0.97
129	1	1	3,932	2194.4	2.15
129	1	13	999	2217.2	0.09
129	1	35	4	1987.8	2.23
130	1	35	3	1995.2	0.45
131	1	1	3,678	2191.5	1.51
132	1	1	3,358	2186.2	1.64
132	1	12	1,052	2212.8	0.68
132	1	33	3	2038.5	1.27
133	1	33	19	2042.0	0.33
134	1	35	4	2043.1	0.28
135	1	1	3,231	2185.0	1.00
135	1	12	1,000	2216.5	0.06
135	1	33	4	2044.8	0.15
136	1	32	3	2044.9	0.02
137	1	33	3	2048.5	1.54
138	2	1	3,187	2182.0	0.95
138	2	11	1,049	2214.8	1.10
138	2	32	3	2049.6	0.21
141	1	1	5,019	2257.0	1.09
141	1	15	1,000	2216.5	0.56
141	1	35	3	2040.2	0.80
144	2	1	5,410	2257.3	0.23
144	2	14	1,050	2215.4	0.10
144	2	35	3	2037.1	0.59
146	1	17	1,000	2215.3	0.21
146	1	35	4	2024.2	2.17
148	2	1	5,807	2255.9	0.61
148	2	17	950	2215.0	1.66
148	2	35	4	2017.4	0.31
150	1	18	1,000	2214.9	0.72
150	1	35	4	2020.1	0.58

 Table 5: Dissolved Inorganic Carbon (DIC) Duplicates (continued)

Keyfield	Lat (N)	pressure	fCO₂(20) (final)	fCO₂(20) (cruise)	fCO ₂ (20) (newH ₂ O)
45101	43	5239.7	762.9	765.80	745.8
45102	43	4994.3	765.7	768.80	748.5
45103	43	4499.7	769.5	771.45	751.7
45104	43	3983.9	768.5	770.30	751.8
45106	43	3001.5	758.4	760.50	742.1
45108	43	2000.5	755.2	756.60	738.6
45109	43	1800.0	761.4	762.90	745.3
45111	43	1401.5	746	747.80	729.8
45112	43	1200.0	728.4	730.10	712.9
45114	43	1001.0	724.1	725.70	708.1
45115	43	900.3	728.7	730.40	713.2
45116	43	800.7	712.4	714.00	696.6
45117	43	699.6	712.3	713.80	696.9
45118	43	601.3	687.2	689.00	672.7
45119	43	501.0	635.2	637.20	621.3
45121	43	401.1	576.8	578.60	563.8
45123	43	299.7	556.3	557.90	543.4
45125	43	201.0	510.7	512.10	499.1
45127	43	151.0	507.8	509.00	495.7
45129	43	99.7	494.1	495.30	482.3
45130	43	79.6	486.6	487.80	474.8
45131	43	60.0	482.2	483.40	471.7
45132	43	39.5	450.7	451.80	440.2
45133	43	19.9	381.9	384.20	374.2
45135	43	3.4	374.7	375.30	365.6

Table 6: Comparison of results of different water vapor correction routines

fCO₂(20)(final) $fCO_2(20)$ (cruise)

final data reduction using the detector XCO₂ (dry) output data reduction on cruise using an empirical water vapor correction fCO₂(20)(new H₂O) data reduction in Jan 2004 using an empirical water vapor correction that was determined post-cruise

 Table 7:
 Analysis statistics for fCO₂(20)

Total number of stations	150
Total number of stations sampled for fCO ₂ (full depth)	67
Total number of Niskin bottles tripped	4823
Total number of Niskin bottles sampled for fCO ₂	1522
Number of duplicates	140
Number of bad values	6
Number of questionable values	48

Key number	Depth	Dif. (µatm) %	Dif.	Ave.	# samples	Comment
1101	200.1	4.4	0.7	644	2	В
1111	2	4	0.8	503.1	2	В
5108	999.7	5	0.7	718.9	2	В
9112	1199.8	4.8	0.6	781	2	В
9133	20.5	0.4	0.1	435.8	2	С
10131	19.8	0.3	0.1	409.0	4	A & B. 4 bottles
13105	2101	4.6	0.6	758	2	В
17103	799.7	4.2	0.6	749.6	2	В
18125	3.1	2.5	0.6	453.45	2	В
25106	1700.4	0	0.0	770.8	2	С
25107	1500.5			770.8	1	B, 1 dup bad
26135	2.3	3.6	0.8	453.2	2	B
28235	2.2			424.4	1	B, 1 dup bad
33102	4000.4	1.7	0.2	775.15	2	В
33135	2.5			384	1	B, 1 dup bad
41121	893.9	2.8	0.4	737.9	2	С
43105	3000.8	1.3	0.2	760.15	2	В
45103	4499.7	1.8	0.2	769.5	2	В
45125	201	0.8	0.2	510.7	2	В
45133	19.9	3.2	0.8	381.9	2	В
47103	1999.7	4.2	0.6	751.2	2	В
47113	748.8	3.5	0.5	707.85	2	В
49111	1199.7	2.2	0.3	701.3	2	В
49126	149.4			507.7	1	B, 1 dup bad
49132	20.3	3.9	1.0	371.75	2	B
51113	1457.1	0.5	0.1	750.05	2	В
51135	2.9	2.9	0.8	356.8	2	В
52133	3.6			358.9	1	B, 1 dup bad
53112	1099.9	2.5	0.3	715.4	2	B
53120	400.3	6.4	1.1	571.9	2	В
54104	4304.7	0.5	0.1	762.5	2	В
54111	1437.6	2.5	0.3	715.4	4	A & B, 2 bottles dup
54135	2.8			357.3	1	B, 1 dup bad
56133	3.2	3.3	0.9	359.7	2	В
57205	2492.3	3.3	0.4	745.0	2	В
57221	398.7	1.4	0.2	597.1	2	В
61204	4297.4	1.9	0.2	763.2	2	В
61215	1300.5	2.9	0.4	740.4	2	В
61230	100.7	1.6	0.4	409.8	2	В
63202	4999.8	1.7	0.2	765.4	2	В
63214	1050.6	1.4	0.2	725.8	2	В
65102	5001.8	2.4	0.3	765.4	2	В
65108	2000.5	3.8	0.5	735	2	В
65114	1099.3	0.6	0.1	766.9	2	В
67203	4707.3	3.4	0.4	770	2	В
67216	1100.5	1.5	0.2	729.1	2	В

 Table 8:
 Table of pCO2 duplicate values

Key	Depth	Dif. (uatm) %	Dif.	Ave.	# samples	Comment
67218	800	(patil) /0	0.5	732.2	2	R
60104	4000 4	2.5	0.3	765.3	2	D R
60106	2000.4	2.5	0.0	763.3	2	D D
60112	2999.0	27	0.0	730.3	2	
71107	2240.7	2.1	0.4	759.5	<u> </u>	D R 1 dup bad
71107	2650.9	1 0	0.2	701.5	1 2	
71110	1750	1.0	0.2	731 2	2	
71113	2540.7	02	0.0	731.2	2	D
72207	2650.2	0.3	0.0	760.5	2	D
72210	2030.2	0.2	0.0	730.0	2	D
74102	1749	1	0.1	733.7	2	D
74103	4500.1	0.1	0.0	760.4	2	D
75125	2000.1	4.0	0.0	702.2	2	D
70100	3.2	0.9	0.5	760.0	<u> </u>	D D 1 dup had
76103	4244.4	1.0	0.2	760.2		
76107	2248.0	1.9	0.3	749.4	2	B
76110	1499.2	1.2	0.2	764.5	2	B
78202	5000	3.4	0.4	765.1	2	B
/8206	2998.9	0.3	0.0	755.9	2	В
80102	4150	7.1	0.9	758.3	2	В
80106	2949.8	0.3	0.0	755.1	2	В
80110	1/50.6	0.8	0.1	762.8	2	В
80126	190	0.3	0.1	420.1	2	В
82203	4747.8	1.3	0.2	766.4	2	В
82207	3549	0	0.0	761.6	2	В
84102	5299.6	2	0.3	770.5	2	В
84106	3799.5	0.6	0.1	768.1	2	В
84112	1899.2	0.6	0.1	765	2	В
84116	1099.9	0.4	0.0	897.9	2	В
86101	5611.2	1.8	0.2	766.1	2	В
86105	4399.6	2.1	0.3	765.6	2	В
88204	4449.5	0.3	0.0	766.5	2	В
88206	3849	1.7	0.2	763.0	2	В
88217	949.2	1.9	0.2	1002.1	2	В
90105	3499.8	3.9	0.5	761.6	3	A & B
90115	898.3	3.3	0.3	1078.4	2	В
94203	4002	0.4	0.1	764.8	2	В
94206	2499.6	0.9	0.1	764.45	2	В
94215	799.2			1151.3	1	B, 1 dup bad
96103	4150.3	0.7	0.1	766.95	2	В
96106	3250.3	0.9	0.1	765.55	2	В
98203	3997.9			770.4	1	B, 1 dup bad
98205	2996.7			757.4	1	B, 1 dup bad
100204	2797.3			756.4	1	B,1 dup bad
100206	2200	0.4	0.1	762.5	2	В
100214	849.5	3.7	0.3	1183.9	2	В
104205	4147.9	2.1	0.3	779.15	2	В

 Table 8:
 Table of pCO₂ duplicate values (continued)

Key number	Depth	Dif. (µatm) %	Dif.	Ave.	# samples	Comment
104207	3548.8	1.8	0.2	760.9	2	В
104213	1748.6	0.8	0.1	791.7	2	B
106206	3998.4	0.6	0.1	777	2	B
106209	2798.8	1.8	0.2	757.5	2	B
108112	1299.2	2.6	0.3	947 7	2	B
108135	2.7	2.3	0.8	285.25	2	B
110205	4400.3	1.2	0.2	777.9	2	B
110212	1899.9	1.8	0.2	763.4	2	B
110226	199.4	8.3	0.8	1048.7	2	B
112105	4148	0.4	0.1	770.6	2	B
112120	550.1	1.6	0.1	1433	2	В
112133	14.5	1.6	0.6	277.8	2	B
114103	4500.9	3.2	0.4	776.2	2	B
114110	1600.6	0	0.0	804.7	2	В
116203	4249.5	0.4	0.1	776.1	2	В
116207	2249.5	0.7	0.1	755.3	2	В
116216	749.2	2.8	0.2	1336.6	2	B
118203	3999.4	3.9	0.5	771.6	2	В
118211	1199.5	5	0.5	1053.1	2	В
118224	199.6	5.2	0.6	873.7	2	В
118233	3.2	0.6	0.2	252.3	2	С
118235	3.1	1.6	0.6	252.6	2	B
120103	3599.9	0.4	0.1	775	2	В
120108	2000			767.1	1	B, 1 dup bad
120129	99.3	0	0.0	596.1	2	B
122204	2999.6	0.2	0.0	769.8	2	В
122212	1149.3	2.9	0.3	1037.1	2	В
124105	2401.5	1.7	0.2	760.0	2	В
124123	300.6	2.2	0.2	1099.6	2	В
126203	3398.7	0	0.0	774.1	2	В
126208	1899.2	0	0.0	758.3	2	В
126225	185.5	3	0.4	855.2	2	В
129103	3098.8	2.7	0.4	770.75	2	В
129133	19.6	0.7	0.3	267.05	2	В
130116	747.7	0.7	0.1	1177.2	2	В
130125	184.6	5	0.6	815.6	2	В
130129	90.4	6	0.8	756.8	2	В
131113	1049.3	1	0.1	1090.7	2	A & B,1 dup bad
132103	2900.3	0.8	0.1	768.2	2	В
132115	750.7	2.5	0.2	1185.1	2	В
132130	50.4	0.4	0.1	323.4	2	В
133133	19.1	1.1	0.4	313.3	2	В
135105	1899.3	1.6	0.2	757.4	2	В
135114	799.4	0.2	0.0	1177.5	2	В
135128	79.6	1.5	0.4	419.25	2	В
138203	2599.7	2.4	0.3	765.1	2	В

 Table 8:
 Table of pCO2 duplicate values (continued)

Key number	Depth	Dif. (µatm) %	Dif.	Ave.	# samples	Comment
138207	1599.3	0.9	0.1	780.0	2	В
138231	10	0.2	0.1	318.7	2	В
141104	3999.6	1.5	0.2	799.75	2	В
141114	1199.6			1016.4	1	B, 1 dup bad
141126	219.8	2.2	0.2	933.8	2	В
144203	4599.9	2.1	0.2	962.55	2	В
144209	1899.6	0	0.0	750.2	2	В
146103	4898.9	5.5	0.6	993.05	2	В
146110	2800	0.7	0.1	764.85	2	В
146126	199.8	0	0.0	910.2	2	В
148203	4998.7	2.3	0.2	1001.15	2	В
148220	548.4	3.8	0.3	1238.8	2	В
150133	25.7	1.1	0.4	293.15	2	В
	Average	2.0	0.3			
	Stdev	1.7	0.3			

 Table 8:
 Table of pCO2 duplicate values (continued)

Values were labeled questionable or bad based on the quality control procedures listed below.

A = from same sample bottle

B = from same Niskin

C = from different Niskins sampled at same depth

	TA μmol/kg	DIC µmol/kg	pH (total scale) @ 25°C	Total Runs
Leg 1				
System 1	2222.2 ± 3.6	2015.0 ± 3.7	7.891 ± 0.007	15
System 2	2224.2 ± 3.2	2017.7 ± 3.4	7.893 ± 0.007	17
Leg 2		1		
System 1	2222.5 ± 4.5	2012.1 ± 2.4	7.895 ± 0.009	16
System 2	2222.9 ± 3.8	2016.1 ± 4.1	7.890 ± 0.009	15
Manual Sys	2217.2 ± 2.1	2013.4 ± 0.5	7.888 ± 0.006	3
Both Legs		1		
System 1	2222.4 ± 3.8	2013.6 ± 3.4	7.891 ± 0.011	33
System 2	2223.6 ± 3.5	2017.0 ± 3.8	7.891 ± 0.008	30
Manual Sys	2217.2 ± 2.1	2013.4 ± 0.5	7.888 ± 0.006	3
		1		
All Systems	2222.7 ± 3.6	2015.2 ± 3.5	7.891 ± 0.009	66
Certified Values				
CRM Batch 59	2220.98	2007.1	7.895a	
			7.9674 +/- 0.0005b	19
TRIS			8.0855 +/- 0.0003a	19
Correction Factor				
Leg 1				
System 1	0.9994	0.9961	0.004	
System 2	0.9980	0.9947	0.002	
Leg 2				
System 1	0.9988	0.9975	0.000	

0.9958

0.9969

0.9991

1.0017

0.005

0.007

Table 9:Total Alkalinity (TA) Certified Reference Material Measurements
(DIC and pH values have been calculated from TA titrations)

System 2

Manual Sys

Station	Niskin Bottle	Depty (m)	DO (µm)
test	1	170	277.2
test	2	170	277.2
test	3	170	276.9
test	4	170	277.1
test	5	170	276.8
test	6	170	276.8
test	7	170	277.1
test	8	170	276.8
test	9	170	276.7
test	10	170	277.4
test	11	170	277.6
test	12	170	274.5*
test	13	170	277.9
test	14	170	277.2
test	15	170	277.3
test	16	170	276.8
test	17	170	277.4
test	18	170	276.9
test	19	170	277
test	20	170	276.8
	A	verage	277.1
		STDV	0.03

Table 10: Replicate analyses of dissolved oxygen concentration from the test CTD cast

* Outlier in replicate analyses not included in the average and possibly due to errors in bottle volumes or sampling.

station	sample	replicate 1	replicate 2	replicate 3	replicate 4
1	1	276.1	266.8*		
1	4	279.1	279.4		
1	8	266.7	289.2		
1	11	297.2	296.1		
2	2	262.8	262.2		
2	18	297.2	302.7*	297.4	
4	1	287.1	161.1*		
5	4	277.3	266.3*		
5	25	276.2*	279.9		
6	1	302.1*	288.1		
6	12	245.4	245.3		
7	8	250.4	249.9		
7	14	269.9*	261.1		
10	6	286.6	286		
10	32	306.3	306.8		
11	4	286.2	286.5		
11	35	307.6	308.3	307.6	
12	23	273.1	273.4		
14	3	277.5	278		
14	32	275.1	275.6		
15	7	232.4	232.1		
15	27, 28	274.3	275.6		
16	2	241.1	241.6		
16	24	279.8	279.9		
19	4	264	264.5		
19	26, 27	274.6	281.7*		
20	4	231.1*	227.4		
20	17	258	257.8		
21	25, 26	275.5	275.1		
24	7	265.7	265.1		
24	25	259	259.3		
25	5	284.3	284.3		
25	20	241	241		
25	28	263.8	264.4		
26	33, 35	268.3	267.9		
28	2	243.7	244.2		
30	9	275.6	276.6		
30	31	271.9	271.7		
32	27	194	194.2		
34	33, 35	269.6	270.2		
40	1	270.2*	246.5		
43	6	268.8	268.6		
43	17	196.5	192.9		
44	7	263.9	264.1		
45	2	247	246.9		
45	35	248.7	249.4		

Table 11: Replicate analyses of dissolved oxygen concentration (µmol/L) by Winkler titration
from same Niskin bottle or different bottles at same depth

station	sample	renlicate 1	renlicate 2	renlicate 3	renlicate 1
	Sample			ieplicale 3	icplicate 4
46	10	208.2	208.4		
4/	(229.7	229.9		
47	31, 32	247.1	247		
49	33	240	239.8		
51	15	195.5	195.9		
51	32	278.3	278.6		
52	11	200.4	200.1		
52	32	240.2	240.4		
53	33, 35	237.9	237.7		
54	14	190.1	191.5		
54	31	261.4	261.4		
55	7	251.2	250.6		
55	31	260	259.9		
57	6	264.9	265.4		
57	33	238.1	237.8		
60	1	250.9	250.8	250.8	
60	11, 15	248.1	247.7	246.3	247.3
60	13	218.7	216.1	216.9	
60	29	236	235.5	235.4	
61	1	258.9	253.3*		
61	2	253.1	251.7		
61	5	251.7	252	252.6	
61	7	252.9	253 1		
62	1	250.9	251		
62	3	251	250.8		
62	5	250.8	250.7		
62	7	251	251.5		
63	8	261	260.9	261 5	
63	13	190 1	190.1	190	
63	17	187.9	187.6	187.0	
63	24	212.6	212.8	212.5	
63	24	212.0	212.0	212.5	
63	23	204.0	240	241.0	
64	33	242.3	242.2		
64	4	106.0	102.4*		
64	12	100.0	102.4		
65	30	237.0	237.0		
65		251.1	251		
65	4	251.8	251.6		
65	17	170.6	170.6		
66	3	251.6	251.4		
66	9	247.4	246.8	400.0	
66	15	181.1	181	180.8	
66	28	228.2	228.8		
67	7	251.2	250.8	251.1	
67	20	191.6	191.5	191.6	

 Table 11: Replicate analyses of dissolved oxygen concentration (µmol/L) by Winkler titration from same Niskin bottle or different bottles at same depth (continued)

station	sample	replicate 1	replicate 2	replicate 3	replicate 4
68	1	251.6	251.8		
68	3	251.6	251.0		
68	7	251.3	251.5		
68	16	189.5	189.7		
68	25	209.5	209.4		
68	33	200.0	200.4		
69	1	251.1	251.3		
69	3	251.5	251.3		
69	5	250.9	250.6		
69	16	180.9	181.3		
69	33	229.8	229.8		
70	9	246.1	245.8		
70	12, 13	192.2	191.3		
70	22	213.5	213.1		
71	1	251.6	251.9		
71	5	251.4	251.6		
71	18	169.8	170		
71	30	242.8	242.9		
72	12	246.3	246		
72	28	217	217.1		
73	1	246.5	246.6		
73	3	246.9	246.6		
73	5	245.9	246.2		
73	16	161.8	162.4		
73	33	213.8	213.8		
74	1	246.1	246.3		
74	4	247.3	247		
74	17	171.6	171.6		
74	21	195.4	195		
74	33	214	214.1		
74	35	213.6	213.8		
75	1	246.4	246.4		
75	5	246.9	246.6		
76	1	246.6	246.7		
76	4	247	246.8		
76	18	182.5	182.3		
77	1	247.3	246.4		
77	5	246.8	247		
77	23	197.8	197.4		
78	4	246.4	246.8		
78	10	214.2	214.4		
79	1	246.3	246.8		
79	5	246.1	246		
79	18	154*	158.2		
/9	33	212.7	212.5		
80	3	249.2	249.3		

 Table 11: Replicate analyses of dissolved oxygen concentration (µmol/L) by Winkler titration from same Niskin bottle or different bottles at same depth (continued)

	-	1		1	
station	sample	replicate 1	replicate 2	replicate 3	replicate 4
80	14	161.4	161.1		
80	32	229.9	229.7		
81	1	249.3	249.6		
81	2	249.6	249.8		
82	2	249.8	249.6		
82	28	213	212.6		
83	1	249.3	249		
83	5	249.3	248.9		
83	18	132.2	132.2		
84	3	238.4*	249.3		
84	15	181.4	181.6		
85	1	248.6	249.2		
85	2	248.8	249.2		
86	1	249.7	248.8		
86	5	249.2	248.8		
86	19	131.2	130.8		
87	1	254.6	254.2		
87	19	130	130.3		
88	1	254.5	254		
88	16	173	172.8		
89	1	253.8	253.5		
89	3	252.3	253.8		
80	5	252.0	251.0		
80	16	133	131.7		
90	2	253.3	253.8		
90	18	116.2	115 7		
<u>01</u>	1	252.9	252.4		
<u>01</u>	18	Q4 7	95.2		
92	1	251.9	251.8		
92	2	251.7	252		
92	18	110.9	110 3		
92	33	215.7	215.8		
94	2	249	249.3		
94	14	117 9	117.5		
95	1	256.4*	245.3		
95	6	243.2	243.4		
95	23	74	73.9		
96	2	243.5	243.2		
96	22	70.5	70.8		
96	32	220.8	220.2		
97	2	246.8	246.9		
97	18	93.2	96*		
 	2	245.9	249.2*		
 	19	81	80.6		
98	32	209	209		
QQ	2	200	200		
00	2	270.1	270		

 Table 11: Replicate analyses of dissolved oxygen concentration (µmol/L) by Winkler titration from same Niskin bottle or different bottles at same depth (continued)

station	sample	replicate 1	replicate 2	replicate 3	replicate 4
99	21	94.8	95		
99	23	94	93.9		
100	2	250.5	250.7		
100	22	76.5	76.2		
100	32	211.2	211		
101	1	250.9	251.2		
101	19	71.6	71.6		
104	2	252	251.9		
104	23	72.9	72.9		
104	33	206.7	206.7		
105	1	253.1	253.3		
105	4	250.1	249.9		
105	25	79.3	79.7		
106	2	253.9	253.6		
106	22	59.5	59.5		
106	33	206.8	206.6		
107	1	252	252.2		
107	18	70.3	70.2		
107	32	206.6	206.2		
108	2	253.4	254.2		
108	21	51	51.2		
108	32	211.6	211.8		
109	2	254.1	254.4	254.2	
109	14	225.3	225.5		
109	22	50.4	51.7		
110	2	254.4	254.5		
110	21	51.4	51		
111	4	250.7	250.8		
111	24	67.7	67.5		
111	30	83.3	83.7		
112	4	253.6	254.5		
112	24	96.2	96.4		
112	32	179.8	179.9		
113	5	254.3	254		
113	17	92.7	92.7		
113	23	89.6	89.5		
114	6	255.5	255.9		
114	25	102.3	102.1		
114	32	186.4	186.5		
115	1	249	249.2		
115	21	64.6	64.5		
115	33	205.5	205.2		
116	2	252.1	252.2		
116	20	77.6	77.3		
116	32	207.9	207.8		
117	4	259.6	259.9		

 Table 11: Replicate analyses of dissolved oxygen concentration (µmol/L) by Winkler titration from same Niskin bottle or different bottles at same depth (continued)

station	sample	replicate 1	replicate 2	replicate 3	replicate 4
117	22	63.7	63		
118	2	257	257.1		
118	19	62.6	62.2		
118	33	206.8	206.9		
119	1	254.8	254.7		
119	22	55.6	55.4		
119	35	206.6	206.9		
120	4	254.8	255.1		
120	24	140	140.3		
120	33	205.4	205.1		
121	3	255.2	255.1		
121	19	70	69.9		
121	33	206.7	206.5		
122	2	255.4	255.3		
122	18	87.8	87.6		
122	33	209.1	209		
123	1	252	252		
123	17	131.6	131.8		
123	29	155.3	155.1		
124	3	255.6	256		
124	28	137.2	137.4		
124	30	205.5	205.8		
125	1	253	253.4		
125	19	112.8	113.8		
125	35	255	254.7		
126	4	256.2	256.3		
126	13	160.7	161		
126	26	98.7	98.1		
127	4	257	257.4		
127	28	99.4	98.9		
127	33	209.2	209.1		
128	2	259.3	259.1		
128	16	153.7	153.9		
128	28	96.7	96.3		
129	3	255	255		
129	19	130.7	136.9		
129	32	207.2	207.5		
130	25	253.0	253.4		
130	35	213.5	213.2		
131	<u>3</u>	201.0	200		
101	20	100.0	100.7		
101	<u> </u>	212.3	212.4		
132	4	203.0 101 F	203.3		
132	19	121.0	120 5		
102	20	102.0	102.0		
133	<u> </u>	201.2	201		

 Table 11: Replicate analyses of dissolved oxygen concentration (µmol/L) by Winkler titration from same Niskin bottle or different bottles at same depth (continued)

at at a sec		nonlinete A	noully star	nonlis et e C	nonling to A
station	sample	replicate 1	replicate 2	replicate 3	replicate 4
133	23	105.4	105.3		
133	32	204.6	204.8		
134	1	257.9	257.7		
134	23	96.8	96.6		
134	35	210.5	210.3		
135	6	245.9	245.9		
135	20	116.9	116.6		
135	33	208.8	208.8		
136	1	256.6	256.2		
136	8	229.2	229.6		
136	26	175.7	175.5		
137	2	256.9	257.2		
137	24	113.4	113.3		
137	32	209.3	209.5		
138	2	255.8	256		
138	20	83.2	83		
138	31	208.9	209.1		
139	2	232.5	232.2		
139	23	95.8	95.6		
140	3	240.9	241.2		
140	23	70.1	70.3		
140	31	207.3	207.5		
141	3	236.2	236.3		
141	15	166.4	166 7		
141	32	209.1	209.2		
143	13	158.7	158.9		
144	2	230.2	230.3		
144	15	158.9	158.8		
144	31	169.2	169.5		
145	1	228	228.1		
145	23	104 3	104 7		
145	35	212.0	212.7		
146	4	234.1	234.3		
146	16	174 5	174 3		
146	25	101.8	101.0		
140	<u>20</u>	233.2	233.6		
147	28	106.3	106.3		
147	33	200.7	200.7		
1/8	1	209.7	203.7		
140	22	220.0	229.2		
140	23	210.3	210		
140	33	210.3	210		
149	2	220.9	220.0		
149	24	00.0	00.Z		
149	30	200.4	200.4		
150	3 24	231.1	201.2		
100	24	005 0	00.Z		
150	31	205.6	205.6		

 Table 11: Replicate analyses of dissolved oxygen concentration (µmol/L) by Winkler titration from same Niskin bottle or different bottles at same depth (continued)

Bottle	Old Volume	New Volume	Difference
1	145.853	145.610	-0.243
2	145.200	145.209	0.009
3	145.318	149,967	4.649
4	143,917	143,908	-0.009
5	139 471	138 748	-0 723
6	145 464	145 470	0.006
7	145 443	145 441	-0.002
8	152 778	152 796	0.018
9	142 276	146 019	3 743
10	145 662	145 666	0.004
11	143 687	143 643	-0.044
12	145 292	147 003	1 711
13	142 335	142 307	-0.028
14	141 151	145 220	4 069
15	145 456	145 507	0.051
16	145 908	145 897	-0.011
17	145 645	145 644	-0.001
18	144 759	144 734	-0.025
19	142.898	142,913	0.015
20	143 300	143 310	0.010
21	146 299	141 180	-5 119
22	144 406	147 777	3 371
23	145 704	148 320	2 616
24	141 570	152 070	10 500
25	145 085	145 109	0.024
26	145 599	145 606	0.007
27	147.751	146.772	-0.979
28	144,469	144,459	-0.010
29	147 404	147 396	-0.008
30	146.101	146.131	0.030
31	146.039	146.004	-0.035
32	145,111	145.152	0.041
33	145.501	145.501	0.000
34	146.663	146.678	0.015
35	143.309	143.347	0.038
36	147.371	147.429	0.058
37	146.290	150.489	4.199
38	140.623	144,152	3.529
39	146.959	151.425	4.466
40	144,179	144,183	0.004
41	139.747	141.192	1.445
42	143.726	150.186	6.460
43	146.369	146.369	0.000
44	142.137	142.137	0.000
45	142.478	142.478	0.000
46	143.805	143.805	0.000
47	143.494	143.500	0.006

 Table 12: After cruise recalibration of the volumes (cm³) of the oxygen bottles

Bottle	Old Volume	New Volume	Difference
48	145.665	142.890	-2.775
49	144.254	144.254	0.000
50	145.715	141.225	-4.490
51	147,807	147,809	0.002
52	146 055	146 055	0.000
53	143 431	143 431	0.000
54	143 347	145 342	1 995
55	144 658	144 715	0.057
56	146 009	146 032	0.023
57	142 607	144 083	1 476
58	145 371	145 372	0.001
59	144 344	144 343	-0.001
60	145 292	145 244	-0.048
61	146 185	146 159	-0.026
62	142 781	142 786	0.005
63	144 319	144 307	-0.012
64	144 039	144 042	0.003
65	145 311	149 630	4 319
66	144 080	144 153	0.073
67	143 908	143 892	-0.016
68	137 386	146 368	8.982
69	145 505	145 539	0.034
70	143 273	143 276	0.003
71	146.396	146.377	-0.019
72	145 602	145 555	-0.047
73	145.019	145.027	0.008
74	146.627	146.634	0.007
75	144.237	144.236	-0.001
76	144.935	144.856	-0.079
77	146.540	146.552	0.012
78	143.597	143.551	-0.046
79	142.704	148.421	5.717
80	146.607	145.227	-1.380
81	147.842	147.813	-0.029
82	145.624	145.493	-0.131
83	149.920	143.503	-6.417
84	149.503	142.045	-7.458
85	143.718	143.666	-0.052
86	145.641	145.552	-0.089
87	143.796	143.654	-0.142
88	140.322	140.321	-0.001
89	138.752	138.633	-0.119
90	138.785	138.658	-0.127
91	145.587	142.249	-3.338
92	144.516	142.404	-2.112
93	151.851	149.504	-2.347
94	145.714	145.720	0.006

 Table 12: After cruise recalibration of the volumes (cm³) of the oxygen bottles (continued)

95149.465149.364 -0.101 96151.184148.882 -2.302 97144.609144.592 -0.017 98152.251152.200 -0.051 99144.545144.552 0.007 100147.346147.187 -0.159 101139.500139.479 -0.021 102149.319149.298 -0.021 103147.485147.484 -0.001 104138.295138.310 0.015 105139.030139.035 0.005 106144.610144.606 -0.004 107148.793148.778 -0.015 108146.952146.951 -0.001 109149.911149.928 0.017 110146.285142.968 -3.317 111149.657141.784 -7.873 112142.400143.215 0.815 113143.206143.217 0.011 114139.272139.267 -0.005 115139.648139.631 -0.017 116141.125141.138 0.013 117141.218142.124 0.906 118147.477147.484 0.007 119148.834148.847 0.013 120147.002147.023 0.021 121144.803144.800 -0.723 122141.945141.949 0.004 123143.415143.134 -0.281 124145.	Bottle	Old Volume	New Volume	Difference
36 143.184 148.882 -2.302 97 144.609 144.592 -0.017 98 152.251 152.200 -0.051 99 144.545 144.552 0.007 100 147.346 147.187 -0.159 101 139.500 139.479 -0.021 102 149.319 149.298 -0.021 103 147.485 147.484 -0.001 104 138.295 138.310 0.015 105 139.030 139.035 0.005 106 144.610 144.606 -0.004 107 148.793 148.778 -0.015 108 146.952 146.951 -0.001 109 149.911 149.928 0.017 110 146.285 142.968 -3.317 111 149.657 141.784 -7.873 112 142.400 143.215 0.815 113 143.206 143.217 0.011 114 139.648 139.631 -0.017 116 141.125 141.138 0.013 117 141.28 142.124 0.906 118 147.477 147.484 0.007 119 148.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.949 0.004 123 143.415 143.134 -0.281 124 145.756 145.780 0.024 <tr< td=""><td>95</td><td>149 465</td><td>149 364</td><td>_0 101</td></tr<>	95	149 465	149 364	_0 101
30101.10410.10212.30297144.609144.592 -0.017 98152.251152.200 -0.051 99144.545144.552 0.007 100147.346147.187 -0.159 101139.500139.479 -0.021 102149.319149.298 -0.021 103147.485147.484 -0.001 104138.295138.310 0.015 105139.030139.035 0.005 106144.610144.606 -0.004 107148.793148.778 -0.015 108146.952146.951 -0.001 109149.911149.928 0.017 110146.285142.968 -3.317 111149.657141.784 -7.873 112142.400143.217 0.011 114139.272139.267 -0.005 115139.648139.631 -0.017 116141.125141.138 0.013 117141.218142.124 0.906 118147.477147.484 0.007 119148.834148.847 0.013 120147.002147.023 0.021 121144.803144.080 -0.723 122141.945141.949 0.004 123143.215 0.313 145.685 145.706 0.021 126 144.523144.527 0.004 122145.685145.706	96	151 184	148 882	_2 302
37 144.32 164.337 98 152.251 152.200 -0.051 99 144.545 144.552 0.007 100 147.346 147.187 -0.159 101 139.500 139.479 -0.021 102 149.319 149.298 -0.021 103 147.485 147.484 -0.001 104 138.295 138.310 0.015 105 139.030 139.035 0.005 106 144.610 144.606 -0.004 107 148.793 148.778 -0.015 108 146.952 146.951 -0.001 109 149.911 149.928 0.017 110 146.285 142.968 -3.317 111 149.657 141.784 -7.873 112 142.400 143.215 0.815 113 143.206 143.217 0.011 114 139.67 -0.005 115 139.648 139.631 -0.017 116 141.125 141.138 0.013 117 141.218 142.124 0.906 118 147.477 147.484 0.007 119 148.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.804 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.825 145.706 0.021 125	07	144 609	140.002	_0.017
30 132.231 132.200 100.31 99 144.545 144.552 0.007 100 147.346 147.187 -0.159 101 139.500 139.479 -0.021 102 149.319 149.298 -0.021 103 147.485 147.484 -0.001 104 138.295 138.310 0.015 105 139.030 139.035 0.005 106 144.610 144.606 -0.004 107 148.793 148.778 -0.015 108 146.952 146.951 -0.001 109 149.911 149.928 0.017 110 146.285 142.968 -3.317 111 149.657 141.784 -7.873 112 142.400 143.215 0.815 113 143.206 143.217 0.011 114 139.272 139.267 -0.005 115 139.648 139.631 -0.017	08	152 251	152 200	0.051
35 144.345 144.345 0.007 100 147.346 147.187 -0.159 101 139.500 139.479 -0.021 102 149.319 149.298 -0.021 103 147.485 147.484 -0.001 104 138.295 138.310 0.015 105 139.030 139.035 0.005 106 144.610 144.606 -0.004 107 148.793 148.778 -0.015 108 146.952 146.951 -0.001 109 149.911 149.928 0.017 110 146.285 142.968 -3.317 111 149.657 141.784 -7.873 112 142.400 143.217 0.011 114 139.272 139.267 -0.005 115 139.648 139.631 -0.017 116 141.125 141.138 0.013 117 144.833 148.847 0.013	00	102.201	144 552	-0.031
100 147.346 147.187 -0.021 101 139.500 139.479 -0.021 102 149.319 149.298 -0.021 103 147.485 147.484 -0.001 104 138.295 138.310 0.015 105 139.030 139.035 0.005 106 144.610 144.606 -0.004 107 148.793 148.778 -0.015 108 146.952 146.951 -0.001 109 149.911 149.928 0.017 110 146.285 142.968 -3.317 111 149.657 141.784 -7.873 112 142.400 143.215 0.815 113 143.206 143.217 0.011 114 139.272 139.267 -0.005 115 139.648 139.631 -0.017 116 141.125 141.138 0.013 117 141.218 142.124 0.906 118 147.477 147.484 0.007 119 148.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.482 144.166 -0.002 125 145.685 145.706 0.024 126 144.523 144.527 0.004 <td>100</td> <td>144.040</td> <td>144.002</td> <td>0.007</td>	100	144.040	144.002	0.007
101 139.300 139.479 -0.021 102 149.319 149.298 -0.021 103 147.485 147.484 -0.001 104 138.295 138.310 0.015 105 139.030 139.035 0.005 106 144.610 144.606 -0.004 107 148.793 148.778 -0.015 108 146.952 146.951 -0.001 109 149.911 149.928 0.017 110 146.285 142.968 -3.317 111 149.657 141.784 -7.873 112 142.400 143.215 0.815 113 143.206 143.217 0.011 114 139.272 139.267 -0.005 115 139.648 139.631 -0.017 116 141.125 141.138 0.013 117 141.218 142.124 0.906 118 147.477 147.484 0.007 119 148.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.806 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.730 138.828 -6.902 131 145.730 138.828 -6.902 131 145.730 138.828 -6.902 132 145.156 145.673 -0.023 <	100	147.340	147.107	-0.159
102 149.319 149.298 -0.021 103 147.485 147.484 -0.001 104 138.295 138.310 0.015 105 139.030 139.035 0.005 106 144.610 144.606 -0.004 107 148.793 148.778 -0.015 108 146.952 146.951 -0.001 109 149.911 149.928 0.017 110 146.285 142.968 -3.317 111 149.657 141.784 -7.873 112 142.400 143.215 0.815 113 143.206 143.217 0.011 114 139.272 139.267 -0.005 115 139.648 139.631 -0.017 116 141.125 141.138 0.013 117 141.218 142.124 0.906 118 147.477 147.484 0.007 119 148.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.482 144.116 -1.366 125 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.756 145.780 0.024 128 140.523 140.521 -0.002 <td>101</td> <td>139.000</td> <td>139.479</td> <td>-0.021</td>	101	139.000	139.479	-0.021
103 147.485 147.484 -0.001 104 138.295 138.310 0.015 105 139.030 139.035 0.005 106 144.610 144.606 -0.004 107 148.793 148.778 -0.015 108 146.952 146.951 -0.001 109 149.911 149.928 0.017 110 146.285 142.968 -3.317 111 149.657 141.784 -7.873 112 142.400 143.215 0.815 113 143.206 143.217 0.011 114 139.272 139.267 -0.005 115 139.648 139.631 -0.017 116 141.125 141.138 0.013 117 141.218 142.124 0.906 118 147.477 147.484 0.007 119 148.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 144.527 0.004 125 145.685 145.706 0.021 126 144.523 144.527 0.002 129 143.820 143.811 -0.002 129 143.820 143.811 -0.002 131 145.696 145.673 -0.023 134 143.807 143.807 0.000	102	149.319	149.298	-0.021
104 138.295 138.310 0.015 105 139.030 139.035 0.005 106 144.610 144.606 -0.004 107 148.793 148.778 -0.015 108 146.952 146.951 -0.001 109 149.911 149.928 0.017 110 146.285 142.968 -3.317 111 149.657 141.784 -7.873 112 142.400 143.215 0.815 113 143.206 143.217 0.011 114 139.272 139.267 -0.005 115 139.648 139.631 -0.017 116 141.125 141.138 0.013 117 141.218 142.124 0.906 118 147.477 147.484 0.007 119 144.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.730 138.288 6.902 131 145.730 138.282 6.902 131 145.849 145.8455 0.006 132 143.807 143.807 0.000 133 145.696 145.673 -0.023 <	103	147.485	147.484	-0.001
105 139.030 139.035 0.005 106 144.610 144.606 -0.004 107 148.793 148.778 -0.015 108 146.952 146.951 -0.001 109 149.911 149.928 0.017 110 146.285 142.968 -3.317 111 149.657 141.784 -7.873 112 142.400 143.215 0.815 113 143.206 143.217 0.011 114 139.272 139.267 -0.005 115 139.648 139.631 -0.017 116 141.125 141.138 0.013 117 144.2124 0.906 118 147.477 147.484 0.007 119 148.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.730 138.288 -6.902 131 145.730 138.288 -6.902 131 145.849 145.855 0.006 132 145.156 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 143.675 0.000 136 <td>104</td> <td>138.295</td> <td>138.310</td> <td>0.015</td>	104	138.295	138.310	0.015
106 144.610 144.606 -0.004 107 148.793 148.778 -0.015 108 146.952 146.951 -0.001 109 149.911 149.928 0.017 110 146.285 142.968 -3.317 111 149.657 141.784 -7.873 111 149.657 141.784 -7.873 112 142.400 143.215 0.815 113 143.206 143.217 0.011 114 139.272 139.267 -0.005 115 139.648 139.631 -0.017 116 141.125 141.138 0.013 117 141.218 142.124 0.906 118 147.477 147.484 0.007 119 148.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.756 145.780 0.024 125 145.685 145.770 0.004 127 145.730 138.828 -6.902 131 145.849 145.855 0.006 132 145.756 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 143.675 0.000 136 141.083 141.083 0.000	105	139.030	139.035	0.005
107 148.793 148.778 -0.015 108 146.952 146.951 -0.001 109 149.911 149.928 0.017 110 146.285 142.968 -3.317 111 149.657 141.784 -7.873 112 142.400 143.215 0.815 113 143.206 143.217 0.011 114 139.272 139.267 -0.005 115 139.648 139.631 -0.017 116 141.125 141.138 0.013 117 141.218 142.124 0.906 118 147.477 147.484 0.007 119 148.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.482 144.116 -1.366 125 145.685 145.706 0.024 126 144.523 144.527 0.004 127 145.730 138.828 -6.902 131 145.849 145.855 0.006 132 145.156 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 143.675 0.000 136 141.083 141.083 0.000 139 144.459 144.459 0.000 <	106	144.610	144.606	-0.004
108 146.952 146.951 -0.001 109 149.911 149.928 0.017 110 146.285 142.968 -3.317 111 149.657 141.784 -7.873 112 142.400 143.215 0.815 113 143.206 143.217 0.011 114 139.272 139.267 -0.005 115 139.648 139.631 -0.017 116 141.125 141.138 0.013 117 141.218 142.124 0.906 118 147.477 147.484 0.007 119 148.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.482 144.116 -1.366 125 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.730 138.828 -6.902 131 145.849 145.855 0.006 132 145.156 145.73 -0.023 134 143.807 143.807 0.000 135 148.692 143.807 0.000 136 141.083 141.083 0.000 138 145.247 145.247 0.000 139 144.459 144.459 0.000 <tr< td=""><td>107</td><td>148.793</td><td>148.778</td><td>-0.015</td></tr<>	107	148.793	148.778	-0.015
109 149.911 149.928 0.017 110 146.285 142.968 -3.317 111 149.657 141.784 -7.873 112 142.400 143.215 0.815 113 143.206 143.217 0.011 114 139.272 139.267 -0.005 115 139.648 139.631 -0.017 116 141.125 141.138 0.013 117 141.218 142.124 0.906 118 147.477 147.484 0.007 119 148.834 148.847 0.013 120 147.022 147.023 0.021 121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.482 144.116 -1.366 125 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.756 145.780 0.024 128 140.523 140.521 -0.002 129 143.820 143.811 -0.003 131 145.696 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 143.675 0.000 136 141.083 141.083 0.000 136 144.59 144.459 0.000 139 144.459 144.459 0.000 <tr< td=""><td>108</td><td>146.952</td><td>146.951</td><td>-0.001</td></tr<>	108	146.952	146.951	-0.001
110146.285142.968 -3.317 111149.657141.784 -7.873 112142.400143.2150.815113143.206143.2170.011114139.272139.267 -0.005 115139.648139.631 -0.017 116141.125141.1380.013117141.218142.1240.906118147.477147.4840.007119148.834148.8470.013120147.002147.0230.021121144.803144.080 -0.723 122141.945141.9490.004123143.415143.134 -0.281 124145.482144.116 -1.366 125145.685145.7060.021126144.523144.5270.004127145.756145.7800.024128140.523140.521 -0.002 129143.820143.811 -0.009 130145.730138.828 -6.902 131145.849145.8550.006132145.156145.146 -0.010 133145.696145.673 -0.023 134143.807143.8070.000135148.692143.6750.000136141.083141.0830.000137143.675143.6750.000138145.247145.2470.000139144.459144.4590.000<	109	149.911	149.928	0.017
111 149.657 141.784 -7.873 112 142.400 143.215 0.815 113 143.206 143.217 0.011 114 139.272 139.267 -0.005 115 139.648 139.631 -0.017 116 141.125 141.138 0.013 117 141.218 142.124 0.906 118 147.477 147.484 0.007 119 148.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.482 144.116 -1.366 125 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.756 145.780 0.024 128 140.523 140.521 -0.002 129 143.820 143.811 -0.009 130 145.730 138.828 -6.902 131 145.849 145.855 0.006 132 145.696 145.673 -0.023 134 143.807 143.675 0.000 135 148.692 143.675 0.000 136 141.083 141.083 0.000 139 144.459 144.459 0.000 140 143.336 143.336 0.000	110	146.285	142.968	-3.317
112 142.400 143.215 0.815 113 143.206 143.217 0.011 114 139.272 139.267 -0.005 115 139.648 139.631 -0.017 116 141.125 141.138 0.013 117 141.218 142.124 0.906 118 147.477 147.484 0.007 119 148.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.482 144.116 -1.366 125 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.756 145.780 0.024 128 140.523 140.521 -0.002 129 143.820 143.811 -0.009 130 145.730 138.828 -6.902 131 145.696 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 143.675 0.000 136 141.083 141.083 0.000 139 144.459 144.459 0.000 141 143.962 143.971 0.009	111	149.657	141.784	-7.873
113 143.206 143.217 0.011 114 139.272 139.267 -0.005 115 139.648 139.631 -0.017 116 141.125 141.138 0.013 117 141.218 142.124 0.906 118 147.477 147.484 0.007 119 148.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.482 144.116 -1.366 125 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.756 145.780 0.024 128 140.523 140.521 -0.002 129 143.820 143.811 -0.009 130 145.730 138.828 -6.902 131 145.696 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 143.675 0.000 136 141.083 141.083 0.000 137 143.675 143.336 0.000 140 143.336 143.336 0.000 141 143.962 143.971 0.009	112	142.400	143.215	0.815
114 139.272 139.267 -0.005 115 139.648 139.631 -0.017 116 141.125 141.138 0.013 117 141.218 142.124 0.906 118 147.477 147.484 0.007 119 148.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.482 144.116 -1.366 125 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.756 145.780 0.024 128 140.523 140.521 -0.002 129 143.820 143.811 -0.009 130 145.730 138.828 -6.902 131 145.849 145.855 0.006 132 145.156 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 148.692 0.000 138 145.247 145.247 0.000 139 144.459 144.459 0.000 141 143.962 143.971 0.009	113	143.206	143.217	0.011
115 139.648 139.631 -0.017 116 141.125 141.138 0.013 117 141.218 142.124 0.906 118 147.477 147.484 0.007 119 148.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.482 144.116 -1.366 125 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.756 145.780 0.024 128 140.523 140.521 -0.002 129 143.820 143.811 -0.009 130 145.730 138.828 -6.902 131 145.849 145.855 0.006 132 145.156 145.7146 -0.010 133 145.696 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 143.675 0.000 138 145.247 145.247 0.000 139 144.459 144.459 0.000 141 143.962 143.971 0.009	114	139.272	139.267	-0.005
116 141.125 141.138 0.013 117 141.218 142.124 0.906 118 147.477 147.484 0.007 119 148.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.482 144.116 -1.366 125 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.756 145.780 0.024 128 140.523 140.521 -0.002 129 143.820 143.811 -0.009 130 145.730 138.828 -6.902 131 145.849 145.855 0.006 132 145.156 145.146 -0.010 133 145.696 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 148.692 0.000 138 145.247 145.247 0.000 139 144.459 144.459 0.000 141 143.962 143.971 0.009	115	139.648	139.631	-0.017
117 141.218 142.124 0.906 118 147.477 147.484 0.007 119 148.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.482 144.116 -1.366 125 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.756 145.780 0.024 128 140.523 140.521 -0.002 129 143.820 143.811 -0.009 130 145.730 138.828 -6.902 131 145.849 145.855 0.006 132 145.156 145.146 -0.010 133 145.696 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 148.692 0.000 136 141.083 141.083 0.000 138 145.247 145.247 0.000 139 144.459 144.459 0.000 141 143.962 143.971 0.009	116	141.125	141.138	0.013
118 147.477 147.484 0.007 119 148.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.482 144.116 -1.366 125 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.756 145.780 0.024 128 140.523 140.521 -0.002 129 143.820 143.811 -0.009 130 145.730 138.828 -6.902 131 145.849 145.855 0.006 132 145.156 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 143.675 0.000 138 145.247 145.247 0.000 139 144.459 144.459 0.000 140 143.336 143.336 0.000	117	141.218	142.124	0.906
119 148.834 148.847 0.013 120 147.002 147.023 0.021 121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.482 144.116 -1.366 125 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.756 145.780 0.024 128 140.523 140.521 -0.002 129 143.820 143.811 -0.009 130 145.730 138.828 -6.902 131 145.696 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 148.692 0.000 137 143.675 143.675 0.000 138 145.247 145.247 0.000 139 144.459 144.459 0.000 141 143.962 143.971 0.009	118	147.477	147.484	0.007
120 147.002 147.023 0.021 121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.482 144.116 -1.366 125 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.756 145.780 0.024 128 140.523 140.521 -0.002 129 143.820 143.811 -0.009 130 145.730 138.828 -6.902 131 145.849 145.855 0.006 132 145.156 145.146 -0.010 133 145.696 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 148.692 0.000 137 143.675 143.675 0.000 138 145.247 145.247 0.000 139 144.459 144.459 0.000 141 143.962 143.971 0.009	119	148.834	148.847	0.013
121 144.803 144.080 -0.723 122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.482 144.116 -1.366 125 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.756 145.780 0.024 128 140.523 140.521 -0.002 129 143.820 143.811 -0.009 130 145.730 138.828 -6.902 131 145.849 145.855 0.006 132 145.156 145.146 -0.010 133 145.696 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 148.692 0.000 136 141.083 141.083 0.000 138 145.247 145.247 0.000 139 144.459 144.459 0.000 140 143.336 143.336 0.000	120	147.002	147.023	0.021
122 141.945 141.949 0.004 123 143.415 143.134 -0.281 124 145.482 144.116 -1.366 125 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.756 145.780 0.024 128 140.523 140.521 -0.002 129 143.820 143.811 -0.009 130 145.730 138.828 -6.902 131 145.849 145.855 0.006 132 145.156 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 148.692 0.000 136 141.083 141.083 0.000 139 144.459 144.459 0.000 140 143.336 143.336 0.000 141 143.962 143.971 0.009	121	144.803	144.080	-0.723
123 143.415 143.134 -0.281 124 145.482 144.116 -1.366 125 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.756 145.780 0.024 128 140.523 140.521 -0.002 129 143.820 143.811 -0.009 130 145.730 138.828 -6.902 131 145.849 145.855 0.006 132 145.156 145.146 -0.010 133 145.696 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 148.692 0.000 137 143.675 143.675 0.000 138 145.247 145.247 0.000 139 144.459 144.459 0.000 140 143.336 143.336 0.000	122	141.945	141.949	0.004
124 145.482 144.116 -1.366 125 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.756 145.780 0.024 128 140.523 140.521 -0.002 129 143.820 143.811 -0.009 130 145.730 138.828 -6.902 131 145.849 145.855 0.006 132 145.156 145.146 -0.010 133 145.696 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 148.692 0.000 136 141.083 141.083 0.000 139 144.459 144.459 0.000 140 143.336 143.336 0.000 141 143.962 143.971 0.009	123	143.415	143.134	-0.281
125 145.685 145.706 0.021 126 144.523 144.527 0.004 127 145.756 145.780 0.024 128 140.523 140.521 -0.002 129 143.820 143.811 -0.009 130 145.730 138.828 -6.902 131 145.849 145.855 0.006 132 145.156 145.146 -0.010 133 145.696 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 148.692 0.000 136 141.083 141.083 0.000 138 145.247 145.247 0.000 139 144.459 144.459 0.000 140 143.336 143.336 0.000 141 143.962 143.971 0.009	124	145.482	144.116	-1.366
126 144.523 144.527 0.004 127 145.756 145.780 0.024 128 140.523 140.521 -0.002 129 143.820 143.811 -0.009 130 145.730 138.828 -6.902 131 145.849 145.855 0.006 132 145.156 145.146 -0.010 133 145.696 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 148.692 0.000 136 141.083 141.083 0.000 138 145.247 145.247 0.000 139 144.459 144.459 0.000 140 143.336 143.336 0.000 141 143.962 143.971 0.009	125	145.685	145.706	0.021
127 145.756 145.780 0.024 128 140.523 140.521 -0.002 129 143.820 143.811 -0.009 130 145.730 138.828 -6.902 131 145.849 145.855 0.006 132 145.156 145.146 -0.010 133 145.696 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 148.692 0.000 136 141.083 141.083 0.000 138 145.247 145.247 0.000 139 144.459 144.459 0.000 140 143.336 143.336 0.000 141 143.962 143.971 0.009	126	144.523	144.527	0.004
128 140.523 140.521 -0.002 129 143.820 143.811 -0.009 130 145.730 138.828 -6.902 131 145.730 138.828 -6.902 131 145.849 145.855 0.006 132 145.156 145.146 -0.010 133 145.696 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 148.692 0.000 136 141.083 141.083 0.000 137 143.675 143.675 0.000 138 145.247 145.247 0.000 139 144.459 144.459 0.000 140 143.336 143.336 0.000 141 143.962 143.971 0.009	127	145.756	145.780	0.024
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	128	140.523	140.521	-0.002
130145.730138.828-6.902131145.849145.8550.006132145.156145.146-0.010133145.696145.673-0.023134143.807143.8070.000135148.692148.6920.000136141.083141.0830.000137143.675143.6750.000139144.4590.000140143.336143.3360.000141143.962143.9710.009	129	143.820	143.811	-0.009
131145.849145.8550.006132145.156145.146-0.010133145.696145.673-0.023134143.807143.8070.000135148.692148.6920.000136141.083141.0830.000137143.675143.6750.000138145.247145.2470.000139144.4590.000140143.336143.3360.000141143.962143.9710.009	130	145.730	138.828	-6.902
132 145.156 145.146 -0.010 133 145.696 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 148.692 0.000 136 141.083 141.083 0.000 137 143.675 143.675 0.000 138 145.247 145.247 0.000 139 144.459 0.000 140 143.336 143.336 0.000 0.000	131	145.849	145.855	0.006
133 145.696 145.673 -0.023 134 143.807 143.807 0.000 135 148.692 148.692 0.000 136 141.083 141.083 0.000 137 143.675 143.675 0.000 138 145.247 0.000 139 144.459 0.000 140 143.336 143.336 0.000 141 143.962 143.971 0.009	132	145,156	145,146	-0.010
134 143.807 143.807 0.000 135 148.692 148.692 0.000 136 141.083 141.083 0.000 137 143.675 143.675 0.000 138 145.247 145.247 0.000 139 144.459 0.000 140 143.336 143.336 0.000 141 143.962 143.971 0.009	133	145.696	145.673	-0.023
135 148.692 148.692 0.000 136 141.083 141.083 0.000 137 143.675 143.675 0.000 138 145.247 145.247 0.000 139 144.459 0.000 140 143.336 143.336 0.000 141 143.962 143.971 0.009	134	143,807	143,807	0.000
136 141.083 141.083 0.000 137 143.675 143.675 0.000 138 145.247 145.247 0.000 139 144.459 144.459 0.000 140 143.336 143.336 0.000 141 143.962 143.971 0.009	135	148.692	148.692	0.000
137 143.675 143.675 0.000 138 145.247 145.247 0.000 139 144.459 144.459 0.000 140 143.336 143.336 0.000 141 143.962 143.971 0.009	136	141.083	141.083	0.000
138 145.247 145.247 0.000 139 144.459 144.459 0.000 140 143.336 143.336 0.000 141 143.962 143.971 0.009	137	143 675	143,675	0.000
139 144.459 144.459 0.000 140 143.336 143.336 0.000 141 143.962 143.971 0.009	138	145 247	145 247	0,000
140 143.336 143.336 0.000 141 143.962 143.971 0.009	139	144 459	144 459	0,000
141 143.962 143.971 0.009	140	143 336	143 336	0,000
	141	143 962	143,971	0.009

 Table 12: After cruise recalibration of the volumes (cm³) of the oxygen bottles (continued)

Bottle	Old Volume	New Volume	Difference
142	144 590	142 608	_1 982
142	145 759	145 776	0.017
144	137 683	145 339	7 656
145	145 356	145 346	-0.010
146	142 249	142 273	0.024
147	145 810	145 800	-0.010
148	144,984	144,954	-0.030
149	146,996	146,998	0.002
150	145.100	145.094	-0.006
151	142.395	142.369	-0.026
152	144.586	144.983	0.397
153	147.093	147.102	0.009
154	145.219	142.119	-3.100
155	150.067	150.055	-0.012
156	138.514	143.383	4.869
157	148.070	144.191	-3.879
158	145.740	145.788	0.048
159	143.852	143.853	0.001
160	145.975	145.999	0.024
161	144.786	144.785	-0.001
162	144.560	144.304	-0.256
163	146.144	146.096	-0.048
164	144.518	144.296	-0.222
165	144.623	144.514	-0.109
166	141.617	141.524	-0.093
167	144.192	144.162	-0.030
168	145.917	145.651	-0.266
169	145.682	145.604	-0.078
170	146.535	146.342	-0.193
171	139.221	139.144	-0.077
172	150.611	150.569	-0.042
173	145.165	145.101	-0.064
174	145.379	145.303	-0.076
175	144.814	144.744	-0.070
176	141.770	141.687	-0.083
177	143.827	143.722	-0.105
178	145.031	144.941	-0.090
179	145.668	143.528	-2.140
180	147.606	147.524	-0.082

 Table 12: After cruise recalibration of the volumes (cm³) of the oxygen bottles (continued)

Thio Bottle	Standard File	Starting Station	Ending Station	Intercept	Slope	Remarks
1	2	1	4	-0.004	24.743	
2	6	4	8	0.1515	24.585	
3	7	7	15	0.1155	23.87	
4	9	16	18	0.0885	24.635	
5	10	19	23	0.1117	24.312	
6	11	24	29	0.05	24.96	
7	15	30	37	0.143	24.495	
8	16	37	46	0.1255	24.135	
9	17	46	50	0.0405	24.845	
10	18	51	58	0.0072	24.988	
11	21	59	61	0.0042	25.075	
12	22	62	65	-0.0015	25.005	
13	23	66	71	-0.0025	24.87	
14	24	72	79	-0.01	25.355	Digital Pipette
15	25	80	86	-0.0007	24.97	
16	26	87	92	0.008	24.755	
17	27	93	97	0.002	24.735	
18	30	98	98	0.0045	24.92	
19	30G	98	106	0.0057	24.873	
19				0.001	24.89	End of the Bottle
20	31G	107	115	0.002	24.88	
21				0.0096	24.719	5-20ml KIO ₃
21	32G	116	123	0.0043	24.747	2-16ml KIO ₃
22	33G	124	131	0.0056	24.757	
23	35G	132	140	0.0097	24.753	
24	36G	141	148	0.0063	24.682	
24				0.009	24.685	Repeat
25	37G	149	150	0.007	24.697	
25	38			0.007	24.678	
25	39			0.0039	24.649	
			Average:	0.03015	24.7421	

Table 13: Shipboard standardization of thiosulfate solution during 2003 A16N cruise

TABLE 14: Post cruise comparison of volume delivery of a manual and the problematic automatic pipette used for stations 72-79 by standardization of KIO₃ solution with same batch Na₂S₂O₃ solution. The correction of 1.01531 was applied to all samples in this station range.

Run	Automatic Factor	Intercept	r2	Manual Factor	Intercept	r2	Ratio
1	25.050	-0.0023	1.0000	24.577	0.0127	1.0000	
2	25.035	-0.0008	1.0000	24.690	0.0057	1.0000	
3	25.017	-0.0005	1.0000	24.685	0.0040	1.0000	
4	25.205	-0.0052	1.0000	24.673	0.0050	1.0000	
5	25.067	0.0012	1.0000	24.687	0.0063	1.0000	
6	24.990	0.0022	1.0000	24.690	0.0070	1.0000	
7	25.112	-0.0030	1.0000	24.670	0.0065	1.0000	
8	25.047	0.0030	1.0000	24.700	0.0060	1.0000	
9	25.290	-0.0063	1.0000	24.685	0.0075	1.0000	
10	24.910	0.0040	1.0000	24.658	0.0075	1.0000	
11	24.861	0.0050	1.0000	24.697	0.0065	1.0000	
12				24.693	0.0083	1.0000	
Ave	25.05309	-0.0002		24.67542	0.0069		1.015306
std	0.120788	0.0037		0.03323	0.0022		
RSD	0.5%			0.1%			

CDT DATA

CTD Personnel: Regina Cesario, Elena Brambilla, Nicole Lovenduski, Kristy McTaggart Final Processing: Kristy McTaggart

ACQUISITION

During this cruise, 150 stations were occupied in the North Atlantic from 63N to 5S primary along 20W at 30nm spacing, and 152 CTDO profiles were collected. All profiles were to within 10m of the bottom, ranging from about 200m to nearly 6000m.

Three underwater package configurations were used during this cruise. The primary package was a new 36-position stainless steel frame mounted with 34 12-liter Niskin bottles, Sea-Bird carousel, load cell, altimeter, pinger, LADCP, and optical sensors. The Sea-Bird CTDO sensors were a 9plus CTD s/n 315; primary TC sensors s/n 4193, 1180; secondary TC sensors s/n 1455, 354; and SBE 43 oxygen sensors s/n 315, 313, or 312.

During bad weather or while testing a deteriorating winch cable, a small 24-position stainless steel frame was employed. This bad weather frame was mounted with 24 4-liter Niskin bottles, AOML-owned Sea-Bird carousel, load cell, altimeter, and pinger. The Sea-Bird CTDO sensors were a 9plus CTD s/n 209; primary TC sensors s/n 1370, 1434; secondary TC sensors s/n 1460, 1177; and SBE 43 oxygen sensors s/n 313 or 312.

The third configuration was comprised of the primary package with the bad weather CTD and sensors, and used after the primary CTD s/n 315 blew the power supply at station 142. Sea-Bird configuration files were named a16n_1.con, a16n_2.con, and a16n_3.con, respectively. N.B., The pre-cruise pressure calibration offset for CTD s/n 315 was amended by +1 dbar in a16n_1.con.

Data were acquired at full 24 Hz resolution through a Sea-Bird 11plus deck unit and the ship's dedicated PC using Seasave software version 5.28c. Analog data were archived onto VCR tapes, although likely unrecoverable. Fortunately, no real-time data were lost. Digital backups were made to Zip disks and CDs.

The discrete sample database, maintained by Frank Delahoyde at sea, totals 4824 records. The only instance of rosette misfire identified was during station 119, where two bottles closed at 1400 dbar; the following 6 bottle closures were offset by one; and no sample was collected at 600 dbar.

PROCESSING

The reduction of profile data began with a standard suite of processing modules using Sea-Bird Seasoft software DOS version 4.249 in the following order:

- DATCNV converts raw data into engineering units and creates a bottle range file. Both down and up casts were processed for scan, elapsed time(s), pressure, t0, t1, c0, c1, and oxygen voltage. Optical sensor data were carried through for casts using the primary package. MARKSCAN was used to skip over scans acquired on deck and while priming the system.
- ALIGNCTD aligns temperature, conductivity, and oxygen measurements in time relative to pressure to ensure that derived parameters are made using measurements from the same parcel of water. Primary conductivity is automatically advanced in the deck unit by 0.073 seconds. On the primary package, the additional alignment of primary sensor s/n 1180 was -0.040 seconds (net alignment 0.033 seconds), and the total alignment for secondary sensor s/n 354 was 0.089 seconds. On the bad weather package, the additional alignment of primary sensor s/n 1434 was 0.010 seconds (net alignment 0.063 seconds), and the total alignment for secondary sensor s/n 1434 was 0.010 seconds (net alignment 0.063 seconds), and the total alignment for secondary sensor s/n 1434 was 0.010 seconds (net alignment 0.063 seconds), and the total alignment for secondary sensor s/n 1434 was 0.010 seconds (net alignment 0.063 seconds), and the total alignment for secondary sensor s/n 1434 was 0.010 seconds (net alignment 0.063 seconds), and the total alignment for secondary sensor s/n 1434 was 0.010 seconds (net alignment 0.063 seconds), and the total alignment of primary sensor s/n 1434 was 0.010 seconds (net alignment 0.063 seconds), and the total alignment for secondary sensor s/n 1177 was 0.089 seconds as it was then being plumbed with the optical sensors in the primary frame. It was not necessary to align temperature or oxygen.
- ROSSUM averages bottle data over an 8-second interval as specified in the range file, and derives salinity, theta, sigma-theta, and oxygen (umol/kg).
- WILDEDIT makes two passes through the data in 100 scan bins. The first pass flags points greater than 2 standard deviations; the second pass removes points greater than 20 standard deviations from the mean with the flagged points excluded. Data were kept within 100 of the mean (i.e. all data).
- FILTER applies a low pass filter to pressure with a time constant of 0.15 seconds. In order to produce zero phase (no time shift) the filter is first run forward through the file and then run backwards through the file. Mistakenly, a time constant of only 0.03 seconds was used for this cruise, of small consequence.
- CELLTM uses a recursive filter to remove conductivity cell thermal mass effects from measured conductivity. In areas with steep temperature gradients the thermal mass correction is on the order of 0.005 PSU. In other areas the correction is negligible. The value used for the thermal anomaly amplitude (alpha) was 0.03. The value used for the thermal anomaly time constant (1/beta) was 7.0. Mistakenly, the secondary sensors of either CTD were not corrected for this effect.
- LOOPEDIT removes scans associated with pressure slowdowns and reversals. If the CTD velocity is less than 0.25 m/s or the pressure is not greater than the previous maximum scan, the scan is omitted.
- BINAVG averages the data into 1 db bins. Each bin is centered on an integer pressure value, e.g. the 1 db bin averages scans where pressure is between 0.5 db and 1.5 db. There is no surface bin.
- DERIVE uses 1 db averaged pressure, temperature, and conductivity to compute salinity, theta, sigma-theta, and dynamic height.
- TRANS converts the data file from binary to ASCII format.

Package slowdowns and reversals owing to ship roll can move mixed water in tow to in front of the CTD sensors and create artificial density inversions and other artifacts. In addition to Seasoft module LOOPEDIT, MATLAB program deloop.m computes values of density locally referenced between every 1 dbar of pressure to compute N^2 and linearly interpolates temperature, conductivity, and oxygen voltage over those records where N^2 is less than or equal to -1e-5 per s^2. MATLAB program calctd_1k.m or calctd_2k.m or calctd_3k.m applies final calibrations to temperature and conductivity, and computes salinity and calibrated oxygen. Program cnv_eps1.f and cnv_eps2.f computes ITS-90 temperature, theta, sigma-t, sigma-theta, and dynamic height; creates WOCE quality flags, and converts the ASCII data files into NetCDF format for PMEL's database. Program wocelst_ox.F converts the NetCDF files into WOCE format for submission to the WHPO, and creates WOCE .SUM files, one for each leg of the cruise.

SALINITIES

Primary TC data were selected from the primary package. These data were used to calibrate stations 1-34, 43-101, and 104-141. Secondary TC data were selected from the bad weather package. These data were used to calibrate stations 35-42, 102-103, and 142-150. Note that stations 144-150 used bad weather CTD s/n 209 in the primary package.

Samples were collected by the CTD watchstander. A duplicate sample was collected from the deepest bottle. Salinity analysis was performed by Greg Johnson on leg 1, and Dave Wisegarver on leg 2. Analysis was done on the ship's autosalinometer using Ocean Scientific ACI2000 interface and IAPSO standard seawater batch P143 dated February 2003. The bath temperature was set to 24C. The ambient room temperature should be within 1 degree of the bath temperature, preferably cooler. Samples were left to equilibrate in the Autosal lab space for a minimum of 8 hours before analysis. The Autosal was standardized once a day.

Sample salinities used to calibrate CTD conductivity sensors were obtained from the Data Manager at sea. However, salinity data were re-evaluated post-cruise and a linear drift correction between standardizations was applied. The final data set was produced at PMEL in December 2003.

OXYGENS

SBE 43 oxygen sensor s/n 315

was used on the primary package for stations 1-60. It had a noticeable trend from the onset but it wasn't confirmed until sample oxygens were reviewed. Sensor s/n 315 was swapped out for sensor s/n 313 prior to station 61. Sea-Bird has suggested that this membrane could've been frozen or torn before the cruise.

SBE 43 oxygen sensor s/n 313

was used first on the bad weather package for stations 35-42 before going on the primary package prior to station 61. Starting at station 94, s/n 313 was not responding well to the new oxygen minimum below the thermocline. It was swapped out for sensor s/n 312 prior to station 122.

SBE 43 oxygen sensor s/n 312

was used first on the bad weather package for stations 102-103. It was moved to the primary package prior to station 122 and used for the remainder of the cruise.

Sample oxygens used to calibrate these sensors were obtained from the Data Manager at sea. However, oxygen data were re-evaluated post-cruise and the final data set was produced at AOML in September 2004.

BOTTLE DATA

Seasoft module ROSSUM created a bottle data file for each cast. These files were appended using program sbecal1k.f for primary sensor data or sbecal2k.f for secondary sensor data. Program addsalk3.f matched sample salinities to CTD salinities by station/sample number. MATLAB calibration programs were used to determine best fit groupings. The final results were a second order polynomial fit for stations 1-100 using the primary sensor pair; a third order polynomial fit for stations 101-141 using the primary sensor pair; a linear fit for stations 35-42 and stations 102-103 using the secondary sensor pair; and a linear fit with a station dependent slope for stations 142-150 using the secondary sensor pair.

[sta,slope,bias,newbotco,newcto	lco]=calcos2(stat,cond,pres,botc,2.8,1,100);
number of points used	2427
total number of points	2815
% of points used in fit	86.22
fit standard deviation	0.001952
fit bias	0.0015337094
min fit slope	0.99993324
max fit slope	0.99997466
[sta,slope,bias,newbotco,newcto	lco]=calcos3(stat,cond,pres,botc,2.8,101,141);
number of points used	1039
total number of points	1312
% of points used in fit	79.19
fit standard deviation	0.0018
fit bias	-0.004654759
min fit slope	1.000081
max fit slope	1.0001403
[sta,slope,bias,newbotco,newcto	lco]=calcos0(stat,cond,pres,botc,2.8,35,42);
number of points used	184
total number of points	202
% of points used in fit	91.09
fit standard deviation	0.001569
fit bias	0.00067359131
min fit slope	1.0000342
max fit slope	1.0000342
[sta,slope,bias,newbotco,newcto	lco]=calcos0(stat,cond,pres,botc,2.8,102,103);
number of points used	42
total number of points	44
% of points used in fit	95.45
fit standard deviation	0.00243
fit bias	-0.0086599793
min fit slope	1.0003549
max fit slope	1.0003549
[sta,slope,bias,newbotco,newcto	lco]=calcos1(stat,cond,pres,botc,2.8,142,150);
number of points used	232
total number of points	279
% of points used in fit	83.15
fit standard deviation	0.001669
fit bias	-0.0027190403
min fit slope	1.0000403
max fit slope	1.0000991

Program addoxyk3.f matched sample oxygens to CTD oxygens by station/sample number. Because of sensor hysteresis, MATLAB programs matched upcast oxygens to downcast oxygens by sigma-2. Coefficients were determined using run_oxygen_cal_1.m and saved in final.mat.

Temperature viscous and drift corrections, conductivity coefficients, and oxygen coefficients were applied to the bottle data file using calclo_k.m. Quality flags for sample salinities were determined using MATLAB program sflag.m. Of the 4676 sample salinities, 0.6% were flagged as bad and 1% were flagged as questionable. Final CTDO bottle data, a16n_allo.flg, were given to John Bullister to incorporate into the master data file. For PMEL's database, individual bottle files for each cast were created in NetCDF format using clb_epso.f.

APPENDIX

WOCE quality flag definitions for water bottles.

Flag	Definition
1	Bottle information unavailable
2	No problems noted
3	Leaking
4	Did not trip correctly
5	Not reported
7	Unknown problem
9	Samples not drawn from this bottle

WOCE water quality flag definitions.

Flag	Definition
1	Sample drawn but analysis not received
2	Acceptable measurement
3	Questionable measurement
4	Bad measurement
5	Not reported
6	Mean of replicate measurements
9	Sample not drawn for measurement

Date	Contact	Data Type	Data Status Summary				
04/01/03	Swift	CTD/BTL List of cruise parameters					
	Here is the current parameter list for the 2003 A16N son-of-WOCE cruise.						
	Kristin Sant on preparati water samp indicates it c	Kristin Sanborn of ODF gave me the list. She has been working with Bob Williams on preparations for the bottle data processing on that cruise. Of course some of the water samples generate many individual parameters. An asterisk after a value indicates it comes from the CTD computer. An f before a value indicates it's a flag.					
	stnnbr btlnbr lat year* second* ctdtmp* pic* scatter* cfc11 cfc13 hcfc22 ch3cl ch3br aomlcfc11 hcfc141b ch3i aomlcfc13 aomlccl4 tcarbn pco2 phspht bcl2	castno (bottle serial numb (decimal degrees) month* (decimal seconds) ctdoxy* (Bishop particulate (Bishop scatter me fcfc11 fcfc13 (AOML HCFC-22) (methyl chloride) (MoML cfc-11) (AOML cfc-11) (AOML cfc-13) (AOML cfc13) (AOML ccl4) ftcarbn fpco2 fphspht fbol2	er) sampno (niskin number + castno*100) lon (decimal degrees) day* hour* min* ctdprs* ctdsal* fctdsal fctdoxy trans* (Bishop tranmissometer) inorganic carbon) ter) sigma0* theta* cfc12 fcfc12 ccl4 fccl4 fhcfc22 fch3cl fch3br faomlcfc11 b) fhcfc141b fch3i faomlcfc13 faomlccl4 nitrat fnitrat nitrit fnitrit silcat fsilcat oxygen foxygen)			
	ph	fph	doc fdoc don fdon				
	There appe each appare	ar to be two differ ently drawing their of	ent CFC groups working at the same time on A1 wn samples.	6N,			
08/27/03	Bullister	CTD/BTL/SUM	Raw shipboard prelim data available via ftp				
	You have my permission to obtain the data from Frank and post them at the website. You should include the caveats that these data are the raw shipboard version, are still preliminary and will be updated.						
09/14/03	Bullister	DOC	Submitted				
	This is from John Bullister and is the project instructions document for A16N_2003a (Ron Brown). It's the closest thing that he had to cruise docs, but he's working on a preliminary post-cruise report. When he completes the work-in-progress, we should replace the new doc with the one he's working on now.			03a on a we			
09/08/03	McTaggart	CTD	Submitted available on NOAA ftp site				
	A16N prelin site: ftp.pme	ninary CTD data f el.noaa.gov under /	les in WOCE format are ready for you on our F ctd/woce/a16n.	-TP			
09/08/03	Diggs	CTD	Data retrieved from NOAA ftp site				
	I have received your files and am checking them over.						

Date	Contact	Data	Туре	Data Statu	is Summary	1	
09/10/03	Delahoyd	BTL/S	UM	BTL Parame	eters Submitte	ed:	
	BTLNBR OXYGEN TCO2	CTDRAV SILCAT TALK	W CTDP NITRA PH	RS CTDTMP AT NITRIT PCO2	CTDSAL C PHSPHT CF	TDOXY TH FC-11 CF	ETA SALNTY C-12 CFC113
	These dat	ta were pro	vided by:				
	Param./P Chief Scie CTDO/S/0 Nutrients TCARBN, CFC CFC HCFs He/Tr 14C/13C	rogram entist D2/NUTs , pCO2	Name John Bull Greg Joh Calvin Me Jia-Zhong Dick Fee Rik Wan John Bull Mark Wa Shari Yvo Peter Scl Ann McN	lister-PMEL ordy-PMEL g Zhang-AOM ly- PMEL hinkhof-AOML lister-PMEL rner-UW on-Lewis-AOM hlosser lichol WHOI	Email bullister@ gjohnson mordy@ IL zhang@a feely@pr rik.wanni bullister@ mwarner ML syvon@a peters@l amcnicho	Dpmel.noaa mel.noaa. aoml.noaa.gu nkhof@noa Dpmel.noaa.gu nkhof@noa docean.wa aoml.noaa.gu ldeo.columl ol@whoi.eo	a.gov aa.gov gov gov ov aa.gov a.gov ashington.edu gov bia.edu
	The data and proce following use. Follo cited as: ' Carbon H further i whpo@uc U.S. Repe	included in essing. The their colled wing Ame "data provi Hydrograph nformation csd.edu. Us eat Hydrog	n these file ey have m ction. Use rican Geo der(s), cru hic Data (n, please sers are a raphy Prog	es are prelim nade available rs should ma physical Unic ise name or o Office, La Jo e contact o lso requested gram in public	inary, and are e for public a lintain caution on recomment cruise ID, data Ila, CA, USA Ila, CA, USA Ila, cA, USA Ila of the d to acknowle cations resultir	e subject to ccess as s n in their in dations, the a file name a, and data parties lis dge the NS ng from thei	o final calibration soon as possible iterpretation and e data should be (s), CLIVAR and a file date." For sted above or SF/NOAA-funded ir use.
	A16N wat	16N water property codes for WOCE ".sum" file "PROPERTIES" column:			lumn:		
	Code Pr 1 Sa 2 O2 3 Sh 4 NC 5 NC 6 PC 7 CF	operty alinity 2 O3 O3 O2 O4 FC-11	Code Pr 8 CF 9 Tri 10 He 12 de 13 de 23 TC 24 TA	operty Cc C-12 2 itium 2 e 2 I14C 3 I13C 4 CO2 4 LK 10	dePropert5PCO26PH7CFC-112DON0POC3DOC0HCFCs	Code 101 102 3 103 104 105 106	Property PIC Al Fe AlkNO3 Carbohydrates CDOM
09/26/03	McTagga	rt CTD		Submitted			
	There is /ctd/woce CTD mea this file, I profile da download the heade WHPO we	a file for /a16n. It's surements found an ata. The led again. er to be a 1 ebsite (e.g.	you on c called a16 and asso error I had ctd files I apologiz 3-characto suffix '_01	our anonymo on_allo.clb an ciated sample d made in ap now on our e for this ove er string inste l' instead of '_	us FTP site, d it is the pre- e salinities and plying the pre- FTP site ar ersight. And I ad of a 12-ch _1').	ftp.pmel.r liminary ca d oxygens. eliminary ca re correct changed aracter stri	noaa.gov, under alibrated discrete In generating alibrations to the and should be the expocode in ng as it is on the

Date	Contact	Data Type	Data Status Summary	
09/29/03	Diggs	CTD Website Updated; CTD submitted and online		
	CTD data red	alibrated. Updated versions of the ctd and ctd- exchange on website.		
10/03/03	Johnson	CTD/BTL Defined ctd/nuts/O2 PIs		
	For A16N ple Zhang for nu	ease keep me (Gr trients, and Zhang	egory Johnson) as PI for CTD/O2 and S, but Mordy & g for bottle O2.	
10/20/03	Diggs	CTD/SUM/BTL	Website Updated with Formatted files	
	CTD, SUM, website.	BTL available a	long with Exchange formatted versions on WHPO	
10/23/03	Diggs	CTD/BTL	Website Updated; Citation added to files	
	Repackaged with new cita	all zip files (WOC tion files per reque	CE CTD, Exchange CTD, and WOCE Bottle w/ SUM) est from Talley and Swift).	
10/29/03	Diggs	SUM/CTD/BTL	Updated archive citations	
	Updated all citations (00_README files) embedded in each zip archive as well as the Exchange formatted bottle file. Bottle Exchange updated to reflect accurate ExpoCodes for each station from updated summary file.			
10/24/03	Kappa	DOC	Cruise Report PDF & ASCII versions Updated	
	added links WHPO-SIO I	added links from TOC to text in PDF version made a text version added these WHPO-SIO Data Processing Notes		
11/03/03	Coartney	Cruise Report	Website Updated; New PDF & ASCII docs online	
01/30/04	Diggs	CTD/BTL/SUM	Website Updated; line identifiers changed	
	Corrected all cruise line identifiers to A16N (from A16N_2003A) as per Jim Swift's request.			
02/20/04	Kappa	Cruise Report	Updated PDF & ASCII versions made	
06/11/04	Diggs	CTD	Website Updated; missing files added	
	A transmission error occurred from PMEL to SIO, resulting in only 80 files being a the WHPO. Alison MacDonlad from WHOI noticed the problem. I re-ftp'd the files format checked them, convert them to Exchange, and put all of the ftp files back or the website. All checks out.			
10/27/04	Hansell	DOC/TDN	Submitted data & sampling procedures report	
	The data disposition is: Public The file format is: Plain Text (ASCII) The archive type is: NONE - Individual File The data type(s) is: Bottle Data (hyd) • Dissolved Organic Carbon • Total Dissolved Nitrogen for A16N2003 Line • Documentation The file contains these water sample identifiers:			
	• Cast N	umber (CASTNO)		
	Station	Number (STATN	0)	
	• Sample	e Number (SAMP)	NO) (next page)	

Date	Contact	Data Type	Data Status	Summary	
	HANSELL, DENNIS would like the following action(s) taken on the data:Merge DataPlace Data Online				
12/10/04	Kozyr	Cruise Report Submitted CO2 report			
	I am attachir decide what	ng here 3 files with and how much info	h reports on me ormation you ne	easured carbon fields. You will have to eed for cruise report.	
12/10/04	Kozyr	CO2	Submitted: TO	CARBN, ALKALI, pH, and pCO2	
	I have just s cruise for mo Please, let m	submitted the final erging into the hyd ne know if you hav	I TCARBN, TAI drographic data e any questions	LK, pH, and pCO2 data for A16_2003 file. Could you with the new numbers. s regarding the data.	
12/10/04	Kozyr	CO2	Submitted		
	This is inform	nation regarding lir	ne A16N_2003a	a	
	ExpoCode: 33RO200306_01 33RO200306_02 Cruise Date: 2003/06/19 - 2003/08/11 From: KOZYR, ALEX Email address: kozyra@ornl.gov Institution: CDIAC/ORNL Country: USA The file: a16n_2003_carbn_final.txt - 308958 bytes Has been saved as: 20041210.063700_KOZYR_A16N_2003_a16n_2003_carbn_final.txt				
	In the directory: 20041210.063700_KOZYR_A16N_2003				
	The data dis The bottle fil The file form The archive The data typ The file cont • Cast N • Station • Bottle • Sampl	position is: e has the following at is: type is: e(s) is: ains these water s lumber (CASTNO) n Number (STATNO) Number (BTLNBR e Number (SAMP)	y parameters: ample identifier O)) NO)	Public TCARBN, TALK, PCO2, PH WOCE Format (ASCII) NONE - Individual File Bottle Data (hyd) s:	
	KOZYR, ALEX would like the following action(s) taken on the data: Merge Data				
	 Any additional notes are: This is the final bottle TCARBN, TALK, pH, and pCO2 data. I have merged these numbers from two different files I received from PMEL and AOML CO2 measurement groups. New quality flags were assigned according to QA-QC work. Please let me know if you need more information on these data. 				

Date	Contact	Data Type	Data Status Summary		
12/10/04	Anderson	CO2 Website Updated OnLine			
	Copied files submitted by A. Kozyr from INCOMING to /a16n_2003a/original_data/20041210_KOZYR_A16N_2003. These files contain updated TCARBN, TALK, PCO2, and PH.				
	I will merge i	nto online file.			
12/17/04	Bullister	Cruise Report	Submitted Final cruise report		
12/29/04	Mordy	NUTs	Submitted by Calvin Mordy		
	This is information regarding line A16N_2003aExpoCode:33RO200306_01_02Cruise Date:2003/06/04 - 2003/08/11From::MORDY, CALVINEmail address:Calvin.W.Mordy@noaa.govInstitution:NOAA/PMELCountry:USAThe file: A16N-Apr14nuts-submitted.xls - 1207296 bytes has been saved as: 20041229.134359_MORDY_A16N_A16N-Apr14nuts-submitted.xls in the directory: 20041229.134359_MORDY_A16N				
	Public				
	The bottle file has the following parameters: SILCAT, NITRAT, NITRIT, PHSPHT				
	The file format is: MS Excel (Binary)				
	The archive type is: NONE - Individual File				
	The data type(s) is: Bottle Data (hyd)				
	The file contains these water sample identifiers: • Cast Number (CASTNO) • Station Number (STATNO) • Bottle Number (BTLNBR)				
	MORDY, CALVIN would like the following action(s) taken on the data: • Merge Data • Place Data Online • Update Parameters				
	 Any additional notes are: Data are provided in µmole/I and µmole/kg. The lab temperature and the CTD bottle salts that were used in the conversion are also provided. 				
12/30/04	Bullister	Cruise Report	Submitted Oxygen Data Report		
	The cruise w	e did was A16N_2	2003 (not p16n_2003).		
	I forwarded A16N_2003 directly to the	Jim Swift's direc last February, a eCCHDO-WHPO.	tive (see next message) to all the investigators on advising them to forward data and documentation I'll send out another reminder. <i>(next page)</i>		

Date	Contact Data Type Data Status Summary				
	In addition to CTD and bo group, revis nutrient dat attachments	o the carbon data ottle salinity data sed oxygen data a from Calvin M to the next messa	and documentation, I have copies here of the revised from Kristy McTaggart, revised CFC data from our (and documentation) from Z.Zhang, and revised lordy. I can send you these individual files as ge.		
	I have merg shipboard file you.	ed all of these r e to create a mas	evised data files into Frank Delahoyde's A16n2003 ter data file in the .sea format. I can also sent this to		
	Unfortunatel more before should be ab	y, I am heading c I leave. I will ha le to answer ques	but tomorrow for the A16S cruise and can't do much ave all the a16n2003 data with me on the cruise and tions by e-mail.		
	My address s	should be:john.bul	lister.atsea@rbnems.ronbrown.omao.noaa.gov		
01/18/05	05 Anderson CO2 Website Updated, data OnLine File Jan. 18, 2005 a16n 2003a 33RO200306 01				
	Merged the 0 2004 re his e	carbon data (TCC mail below into or	D2, TALK, PH, and PCO2) sent by A. Kozyr Dec. 10, nline file. Made new exchange and netcdf files.		
	Date Fri, 14 Jan 2005 14:18:05 -0500 From: Alexander Kozyr <kozyra@ornl.gov> Subject: A22_2003 Alkalinity data To: Sarilee Anderson <sarilee@minerva.ucsd.edu></sarilee@minerva.ucsd.edu></kozyra@ornl.gov>				
	Thank you ve	ou very much Sarilee. Did you make a new exchange file as well?			
	Could you (TCARBN (c WHPO but c please make seems like numbers and	D3a files? I've sent the final carbon-related data I, pH, and pCO2) for this section on 12/10/2004 to changes in your files. When you merge these data, erge all four parameters, because from the first look it are the same, but in reality we PIs changed some			
02/14/05	Kappa Cruise Report Replaced "Cruise Instructions"				
	The bulk of this cruise report was submitted by Alex Kozyr on 12/10/04. It includes sections on: • TCARBN • Fugacity of CO2 • ALKALI • pH • Nutrients • Oxygen • Figures • Tables Both the PDF and ASCII cruise reports also contain the WHPO/CCHDO summary pages, and these Data Processing Notes. Figures are found only in the PDF version. The PDF version also has links from text to figures and tables, PDF				

bookmarks and PDF thumbnails.

Date	Contact	Data Type Data Status Summary			
03/10/05	McTaggart	CTD	Submitted Data Processing Report		
	Attached is the CTD documentation file I gave to John Bullister along with the CTD bottle data last November. He said it was incorporated into a document with oxygens and nutrients etc. and submitted to WHPO.				
03/15/05	Kappa CTD Added CTD Data Processing report				
	Added CTD Data Processing Report to Cruise report				

Added CTD Data Processing Report to Cruise report